Xreferat.com » Рефераты по математике » Методы решения уравнений, содержащих параметр

Методы решения уравнений, содержащих параметр

остальных значениях параметра a уравнение решений не имеет.

Пример. Решить уравнение .

Решение. Имеем .

Достаточно рассмотреть три случая:

.

.

.

Делая замену , получаем, что  или . То есть  или . Проверим, являются ли найденные значения переменной корнями. Подставляя значения переменной в уравнение, получаем, что  не подходит, тогда корнями являются значения .

3.

Делая замену , получаем  или . Аналогично, как и при , проверкой устанавливаем, что только  и  не являются корнями. Тогда  является корнем. Итак,

Ответ. При , ;

при ;

при , .

Параметр и количество решений уравнений, содержащих параметр

Выделим класс задач, где за счет параметра на переменную накладывается какие-либо ограничения. Для таких задач характерны следующие формулировки:

«При каком значении параметра уравнение имеет одно решение, два решения, бесконечно много, ни одного»;

Решением уравнения (неравенства, системы) является какое-то подмножество множества действительных чисел и другие (см. [5]).

Пример. В зависимости от значения параметра  найти число корней уравнения

Решение. Наличие сложного корня наводит на мысль выделения квадрата двучлена под внешним корнем.

Итак, мы вплотную подошли к задаче рассмотрения различных случаев параметра .

Если , то уравнение не имеет решения.

Если , то рассмотрим . Если , то . При условии , и очевидно это уравнение имеет только один корень.

Ответ. При  – одно решение,

при  – решений нет.

Пример. При каких значениях параметра  уравнение

имеет единственное решение?

Решение. Уравнение переписываем в равносильную систему

Решением неравенства является объединение промежутков . Уравнение системы имеет один корень когда . , то есть при  .

Теперь проверим, принадлежит ли корень нашим интервалам: .Тогда

Ответ. При  уравнение имеет единственное решение.

Пример. При каких значениях параметра  уравнение

.

имеет единственное решение?

Решение. Запишем равносильное уравнение.

.

Теперь перейдем к следствию . Откуда , . Возникла ситуация, которая дает нам возможность воспользоваться механизмом отсеивания корней.

Область определения исходного уравнения найдем из условий

Очевидно,  и  удовлетворяют первым двум условиям. Тогда для единственности решения достаточно потребовать

Найдем решение первой системы, преобразуем ее.

Имеем, что решением первой системы является объединение интервалов .

Вторая система решения не имеет.

Ответ. .

Параметр и свойства решений уравнений, содержащих параметр

В этом пункте мы рассмотрим задачи, в которых условие требует, чтобы ответ был каким-либо наперед заданным подмножеством или идут ограничения на множество значений переменной  (см. [5], [12], [13]).

Пример. При каких значениях параметра  оба корня уравнения  больше 3?

Решение. Корнями данного уравнения будут

Для условия необходимо выполнение системы

Первое неравенство системы и второе будут иметь общие точки только в том случае если выражение под корнем равно нулю.

Решим уравнение .

Ответ. Ни при каких значениях параметра  оба корня данного уравнения не могут быть больше 3.

Параметр как равноправная переменная

Во всех разобранных задач параметр рассматривался как фиксированное, но неизвестное число. Между тем с формальной точки зрения параметр – это переменная, причем равноправная с другими. Подобная интерпретация, естественно, формирует еще один тип (а точнее метод решения) задач с параметрами (см. [5]).

Пример. Указать все значения параметра , для которых уравнение  имеет решение?

Решение. Обозначим . Исходное уравнение , с учетом , равносильно системе

Рассмотрим квадратное уравнение, относительно параметра  . Найдем дискриминант рассматриваемого уравнения .

, так как  и , то . Поэтому последняя система равносильна

Рассмотрим функцию . Вершина параболы – есть точка с координатами . Минимум функции есть значение ординаты вершины параболы. Поэтому можем утверждать, что параметр  принимает значения в отрезке  на отрезке .

Ответ.

Замечание: другой способ решения будет рассмотрен позднее (см. пункт 4.2.4).

Пример. Решить уравнение .

Важно показать при изучении параметров связь параметра с конкретными значениями и эта задача показывает эту связь. Цель этой задачи в том, чтобы показать что задачи, не содержащие параметр, можно решать и способами решения уравнений, содержащих параметр. Решение этого уравнения показывает, что исследования различных решений с параметрами позволяет решать задачи более простыми методами.

Решение. Это уравнение равносильно системе

Представим уравнение системы в виде квадратного уравнения относительно числа 5.

Откуда, учитывая , получаем

Ответ. .

Методы поиска необходимых условий . Использование симметрии аналитических выражений

В тех случаях, когда непосредственный поиск значений переменной затруднен, можно сначала выделить необходимые условия, а затем от необходимых условий перейти к достаточным условиям.

Будем называть задачи, решаемые таким методом, задачами с поиском необходимых условий.

Необходимые условия задач этого пункта:

В каждой задаче обязательно фигурирует аналитическое выражение, геометрический образ которого имеет ось или плоскость симметрии.

Во всех задачах в той или иной форме присутствует требование единственности решения.

Если описываемые задачи имеют решением координаты точки М, то найдется симметричная точка М1, координаты которой тоже являются решением, тогда точка М должна лежать (в силу единственности решения) на оси симметрии, но заметим, что это требование не является достаточным.

Высказанные соображения и составляют основу одного из метода поиска необходимых условий, о котором будет идти речь в следующих задачах (см. [1], [5], [12]).

Пример. При каких  уравнение  имеет одно решение.

Решение. При замене  на  (и наоборот) уравнение не меняет смысла, поэтому если точка с координатами  – решение то и  – решение. А так как в условии необходимо единственность решения, то .

Тогда . Так как , то , что возможно только для случая равенства и при . Тогда получаем . Откуда находим два корня уравнения, а в силу единственности, дискриминант приравниваем к нулю и получаем .

Ответ. При  уравнение имеет одно решение.

«Каркас» квадратичной функции. Дискриминант, старший коэффициент.

Фактически все важные свойства квадратичной функции определяются таблицей. Где – конструируют «каркас», на котором строится теория квадратичной функции (см. [1], [2], [5], [7], [8], [18], [21], [22])

X0

X0

Таблица 1.

Пример. При каких значениях параметра  все пары чисел , удовлетворяющие неравенству , одновременно удовлетворяют и ?

Решение. Часто бывает удобно начать решение задачи с рассмотрения упрощенной модели. Так, в конкретном случае уместно поставить задачу: при каком соотношении  и  все решения неравенства  одновременно являются решениями неравенства . Ответом на этот вопрос очевиден: .

Тогда в этом примере нужно, чтобы  при всех .

.

Найдем дискриминант,  . Дискриминант меньший либо равный нулю определит искомый параметр.

, что равносильно системе

Ответ.

«Каркас» квадратичной функции. Вершина параболы

Пример. При каких значениях  наибольшее значение трехчлена  меньше 4.

Решение.

Так как графиком трехчлена является парабола, то необходимость наибольшего значения меньшего 4 обязывает параметр .

Наибольшее значение будет в вершине параболы.

. Ограничение  тоже обязательно. Решением этого неравенства есть . Учитывая необходимость , то .

так как , то решением будет объединение . Тогда Ответ. .

Корни квадратичной функции. Теорема Виета

Рассмотрим квадратное уравнение . Найдем корни этого уравнения . По теореме Виета выполняется следующая система уравнений , где  и . Рассмотрим задачу, решение которой при использовании теоремы Виета намного упрощается.

Пример. При каком значении параметра  сумма квадратов корней уравнения  принимает наименьшее значение?

Решение. Найдем дискриминант, . Уравнение имеет два корня при любом . Используя теорему Виета, найдем . Таким образом, найдем наименьшее значение функции  на множестве . Поскольку при  , а при  , то наименьшее значение при .

Ответ. .

Аппарат математического анализа ( касательная к прямой )

Учащиеся, как правило, затрудняются с определением касательной к кривой (типичен ошибочный ответ: «Касательная – это прямая, имеющая с кривой одну общую точку»), не видят связь между касательной к графику и ее производной, не понимают смысла переменных в уравнении касательной, не могут применить соответствующие факты к решению задач, особенно геометрического характера. Пояснить учащимся суть вещей могут помочь, например, следующие задачи (см. [1], [5], [19], [21]).

Пример. При каком значении параметра k касательная к графику функции  образует с осью ОХ угол, равный , и отсекает от второй четверти треугольник, площадь которого равна ?

Решение. Пусть  – координаты точки касания. Уравнение касательной к графику функции  в точке  имеет вид

.

По условию имеем , . Тогда . Уравнение касательной становится таким: . Найдем координаты точки пересечения касательной с осями.

При .

При .

Тогда, с учетом второй четверти и :

Ответ.

Пример. Найти все значения параметра , при которых на графике функции  существует единственная точка с отрицательной абсциссой, касательная в которой параллельна прямой .

Решение. Ясно, что угловой коэффициент касательной, о которой говорится в условии, равен 2. Тогда, если  – абсцисса точки касания, то , то есть .

Остается потребовать, чтобы это уравнение имело единственный корень. . При  уравнение не имеет смысла, при  уравнение равносильно:

Введем замену . Тогда . Для единственности корня необходимо, чтобы дискриминант был равен нулю, .

При таких значениях параметра  корнем уравнения является , который, как очевидно, принимает отрицательные значения.

Ответ. .

Пример. Найти критические точки функции .

Решение. Напомним определение критической точки. Внутренняя точка области определения функции, в которой производная равна 0 или не существует, называется критической.

Имеем . Поскольку найденная производная существует во всех внутренних точках области определения функции , то критические точки следует искать среди корней уравнения , откуда . Осталось потребовать, чтобы .

Ответ. Если , то  - критическая точка;

если  - критических точек нет.

Свойства функций в задачах, содержащих параметр. Функциональный подход

Учащиеся не всегда умеют сознательно использовать информацию о свойствах функций, например, о ее множестве значений, непрерывности, экстремумах и так далее.

Многие школьники лишь формально усваивают понятие производной, не понимают ее геометрического смысла. Есть проблемы и при изучении понятий первообразной и интеграла. Задачи, которые приведены ниже, призваны пояснить школьнику смысл всех этих понятий и показать возможности их применения (см. [14]).

Предложенные задачи классифицированы в зависимости от того, какое свойство функции является основным в решении.

Область значения функции

Иногда задачи не содержат прямой подсказки использовать область значения функции. Такая необходимость возникает в ходе решения. [5], [14]

Пример. Решить уравнение .

Решение. Так как , то пусть . Получаем . Очевидно, при  решение имеется. Найдем корни , так как , то рассмотрим три случая:

, тогда

,

,

Ответ. Если , то ;

если , то ;

если , то .

Пример. Решить уравнение .

Решение. Рассмотрим область допустимых значений . Отсюда , . Тогда получаем равносильное уравнение

.

Откуда . Учтем два случая, так как , то .

. Тогда .

. При  , а . Этот случай мы рассмотрели. Тогда рассмотрим случай . Откуда . Итак,

Ответ. Если  решений нет;

если , ;

если , .

Наибольшее и наименьшее значени я

При решении задач весьма полезным оказывается следующее обстоятельство. Если в уравнении , где , , а  для всех , то можно перейти к равносильной системе уравнений (см. [5], [14], [19])  

Пример. Решить уравнение .

Решение. Произведем преобразование правой части. . Тогда наше уравнение будет иметь вид .

Оценим левую и правую части уравнения . Тогда заключаем, что обе части уравнения должны быть равны единице и это нас приводит к системе

Запишем равносильную систему

Выразим х из первого уравнения системы и подставим во второе уравнение.

Решением последней системы будут  и .

Тогда Ответ. Если , то

Если , то .

Пример. Найти все действительные значения , при которых область определения функции

совпадает с множеством всех действительных чисел.

Решение. Область определения будет все действительные числа, если функция будет определена, то есть задача состоит в нахождении значений параметра .

Для этого необходимо решить систему

Учитывая условие , решением последнего неравенства будет являться интервал .

Ответ. При  условие выполняется.

Монотонность

Прежде всего заметим, что в случае возрастания (убывания) функции  имеет место равносильность уравнений  и  (см. [5], [14]).

Пример. Решить уравнение

Решение. Так как функция монотонна и возрастает, а значение справа фиксировано, то данное уравнение имеет не более одного корня. Легко заметить, что  - корень.

Ответ. .

Пример. Для  решить уравнение

Решение. Перепишем данное уравнение в виде .

Пусть .

Тогда исходное уравнение становится таким

Рассмотрим функцию . Функция возрастает на промежутке , так как , то . Следовательно, принадлежат промежутку монотонности функции . Отсюда имеем . Тогда , то есть . Сопоставим с исходным и получим .

Для  полученное квадратное уравнение имеет положительный дискриминант .

Ответ. .

Замечание: другой способ решения будет рассмотрен ниже (в пункте 4.2.4).

Пример. Определить число корней уравнения .

Решение. Имеем .

Функция  возрастает на . Тогда . Исходное уравнение имеет не более одного корня. При  он единственен.

Ответ. Если , то уравнение имеет единственный корень;

если , корней нет.

Четность. Периодичность. Обратимость

Пример. Указать все значения параметра , для которых уравнение  имеет решения (см. [5], [14]).

Решение. Пользуясь тем, что эта задача уже была решена, рассмотрим сразу систему

Рассмотрим функцию  при . Отметим, что эта функция обратима и обратной к ней является . Так как функция возрастающая, то общие точки лежат на прямой . Получаем . Решение которой нам известно.

Ответ. .

Пример. Решить уравнение .

Решение. Рассмотрим функцию  и  они взаимно обратные и возрастающие. Тогда  равносильно исходному.

Ответ. .

Пример. Для  решить уравнение .

Решение. Очевидно , то . Рассмотрим функцию . Она возрастает на . Следовательно, при  эта функция обратима, причем функция  является для нее обратной. Отсюда . Заметим, что мы использовали функцию, стоящую в правой части уравнения, потому что такой выбор не изменяет область определения первоначального уравнения.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: