Xreferat.com » Рефераты по математике » Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок

Кулигин В.А., Кулигина Г.А., Корнева М.В.

Введение

Исследуя проблемы калибровки уравнений Максвелла [1], [2], мы математически строго доказали следующее.

1. Задача Коши для уравнений в частных производных не имеет единственного решения. Решение зависит от выбора калибровки, т.е. калибровочная инвариантность и градиентная инвариантность в общем случае не имеют места.

2. Предельный переход в уравнениях Максвелла от волновых процессов к квазистатическим при v<<c является незаконным.

3. В силу этого, электромагнитные волны и квазистатические поля заряженных инерциальных частиц (электронов, протонов и т.д.) должны описываться разными группами уравнений. Электромагнитная волна должна удовлетворять волновому уравнению, а квазистатические поля должны описываться уравнением Пуассона.

Поскольку выводы опираются на строгое математическое доказательство и не содержат каких-либо гипотез, они подрывают основы не только классической электродинамики, но и квантовой электродинамики.

В то же время, хорошее согласие уравнений Максвелла с экспериментом (например, прекрасно подтвержденная экспериментом теория антенно-фидерных систем) и ряд важных результатов в квантовой электродинамике требуют поиска объяснения этих фактов.

В настоящей работе показано, что существует условие, при котором имеет место градиентная инвариантность, т.е. эквивалентность кулоновской калибровки и калибровки Лоренца. Рассмотрены также следствия, вытекающие из этого условия.

1. Токи в коаксиальной линии

Первым направлением наших исследований, нацеленным на решение поставленной проблемы, стал анализ различных калибровок уравнений Максвелла и попытки видоизменить эти уравнения так, чтобы сохранить положительные результаты и правильно описать явления. К сожалению, этот путь не привел нас к желаемым результатам.

Второе направление – анализ решений уравнений Максвелла для различных задач электродинамики. Именно этот путь позволил переосмыслить уравнения Максвелла и найти условие, при котором градиентная инвариантность имеет место.

В качестве иллюстрации рассмотрим распространение полей в коаксиальной линии (ТЕМ волна). Когда к линии подключается источник напряжения, между проводниками линии начинает со скоростью света распространяться электромагнитная энергия. Проводник, как известно, можно рассматривать как квазинейтральную систему, в которой заряды электронов и ионов создают суммарное поле, равное нулю при отсутствии сторонних источников полей. В рамках максвелловской теории имеет место закон сохранения заряда. Если заряды возникают (разделяются), то попарно (положительный и отрицательный) без нарушения этого закона.

Мы должны при объяснении процессов принять также во внимание то, что согласно современным воззрениям средняя скорость электронов проводимости в проводнике весьма мала.

Вернемся к полям в коаксиальной линии. Рассмотрим процесс распространения энергии при подключении к линии источника постоянного напряжения. В современной литературе нет ясного объяснения процесса распространения энергии от источника. Мы рассмотрим некоторые варианты.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок

Рис.1

Вариант первый. Это наиболее распространенный вариант объяснения. В линии будет распространяться волна, которая на поверхности проводников образует заряды. Поверхностные заряды движутся и создают поперечное электрическое и магнитное поле.

Однако, если волна возбуждает эти заряды, то они возникают парами в соответствии с законом сохранения заряда (ион и электрон проводимости). Сразу после прохождения фронта волны заряды должны разделяться в обоих проводниках, причем так, чтобы на центральном проводнике существовали и двигались только положительные заряды, а на периферийном – только отрицательные заряды. В противном случае электрическое поле в коаксиальной линии существовать не может! В этом случае мы должны объяснить следующую проблему. Каким образом при рождении пары разноименных зарядов на каждом из проводников (ион и электрон проводимости) электрон проводимости может перескочить с центрального проводника на периферийный, чтобы обеспечить избыток отрицательных зарядов на внешнем проводнике и недостаток – на внутреннем (положительный ион, конечно же, не может!)? Такого механизма перехода не существует.

Вариант второй. Можно предположить другое. Вдоль проводников от источника напряжения и к нему по разным проводникам движутся электроны проводимости как показано на рис. 2. Однако и это положение не согласуется ни с теорией относительности (например, здесь скорость электронов проводимости должна быть равна скорости света), ни с современными представлениями о малой средней скорости перемещения электронов проводимости в проводнике.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок

Рис. 2

Третий вариант. Второй вариант объяснения можно дополнить предположением, что электроны проводимости по какой-то причине “теряют” свои инерциальные свойства, т.е. их масса покоя становится равной нулю. Тогда они действительно могут двигаться со скоростью света вдоль поверхности металла. Но и этот вариант имеет дефект. Причина в том, что поверхностные токи на каждом из проводников образуются только электронами проводимости (положительные ионы неподвижны!). Следовательно, при распространении энергии вдоль линии даже при переменном напряжении внутри коаксиальной линии должна образовываться и существовать постоянная составляющая магнитного поля. Экспериментально она не была зафиксирована.

Новый вариант. По этой причине у нас остается единственный вариант объяснения. В проводнике должны существовать положительные и отрицательные заряды, не обладающие инерциальными свойствами. Но это не инерциальные электроны проводимости! Следовательно, не волна возбуждает заряды и токи в коаксиальных линиях, волноводах и т.д. на поверхностях проводников. Такие заряды создаются источником напряжения, и они движутся со скоростью света вдоль поверхности проводников. Именно они порождают в линии электромагнитные поля и переносят энергию; они – источник полей в длинных линиях.

Этот вывод настолько противоречит современным представлениям, что необходимо рассмотреть математическую сторону этого процесса.

Известно, что поля Er и H , которые существуют в коаксиальной линии, образуя ТЕМ волну, удовлетворяют волновым уравнениям.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(1.1)

Выделим кольца шириной dz на поверхностях коаксиальных цилиндров (см. рис. 1) и подсчитаем величину зарядов на этих кольцах:

Внешний коаксиальный цилиндр: dq1=2 b Er(b)dz.

Внутренний коаксиальный цилиндр: dq2=2 a Er(a)dz,  dq1 = dq2 =dq

Поверхностные токи этих проводников соответственно равны:

Внешний коаксиальный цилиндр: I1=2 bH (b).

Внутренний коаксиальный цилиндр: I2=2 aH (a),  I1 = I2 =I.

Принимая во внимание уравнения (2.1), мы можем записать уравнения для зарядов и токов:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок. (1.2)

Из уравнений следует, что поверхностные заряды q, создающие поверхностные токи I, движутся вдоль коаксиальной линии с постоянной скоростью, равной скорости света! Эта скорость неизменна. Заряды не могут ускоряться или замедляться под действием каких-либо сил. Они не имеют инерциальных свойств. Масса покоя этих зарядов равна нулю. Мы еще раз хотим повторить, что единственным источником этих зарядов служит источник U.

Описанные выше токи и заряды не являются чем-то новым. Любой учебник, описывающий распространение волн в волноводах, коаксиальных линиях и т.д., содержит упоминание о поверхностных зарядах и токах. Однако авторы учебников по классической электродинамике старательно избегают обсуждать эту проблему. Причина тривиальная.

Ток в проводниках, согласно современным представлениям, обусловлен движением электронов проводимости. Признать, что эти электроны могут двигаться со скоростью света, означает признать несостоятельной Специальную теорию относительности. Добавим, что движение электронов с такой скоростью не согласуется с результатами электронной теории. По этим причинам авторы учебников “списывают” эти явления на электромагнитную волну, избегая подробностей объяснения.

Существование безинерциальных зарядов и токов – не гипотеза. Вся современная теория антенно-фидерных систем подтверждает их существование. Необходимо лишь отбросить предрассудки и догмы современных представлений и опереться на логику и здравый смысл. Нужно осознать и принять этот факт.

2. Условие выполнения “градиентной инвариантности”

Как мы установили в [1], [2], градиентная инвариантность в общем случае не имеет места. Для инерциальных зарядов кулоновская калибровка не эквивалентна калибровке Лоренца. Эквивалентность требует одновременного выполнения двух условий:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(2.1)

В общем случае, если мы рассматриваем движение зарядов с произвольной скоростью v, это условие не выполнимо. Два записанных уравнения несовместны.

Однако пример, рассмотренный в предыдущем параграфе, подсказывает единственное условие эквивалентности калибровок. Оно гласит:

Уравнения (2.1) являются совместными тогда и только тогда, когда плотность пространственного заряда удовлетворяет волновому уравнению.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(2.2)

Как следствие, токи тоже должны подчиняться этому уравнению

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(2.3)

где с - вектор скорости, равный по величине скорости света.

Действительно, если заряд удовлетворяет волновому уравнению, то его потенциал удовлетворяет ему автоматически. Мы не будем останавливаться на простом доказательстве этого факта. Сформулированное нами условие, когда градиентная инвариантность имеет место, влечет за собой важнейшие следствия фундаментального характера.

Уравнения Максвелла имеют дело только с безинерциальными зарядами и токами.

Уравнения Максвелла не могут описывать поля инерциальных зарядов (электронов, позитронов, протонов и т.д.). Заметим, что, предельный переход к малым скоростям зарядов Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровокнекорректен, как было математически строго установлено в [1] и [2]. К счастью, в таком переходе нет необходимости, поскольку безинерциальные заряды имеют постоянную скорость, равную скорости света.

Итак, в проводниках существуют токи двух видов: токи, образованные электронами проводимости, и токи, образованные безинерциальными зарядами.

Ниже мы будем многократно обсуждать свойства двух этих типов зарядов. Заметим, что безинерциальность поверхностных зарядов в проводниках позволяет объяснить высокую величину коэффициента отражения света от гладких металлических поверхностей и весьма быстрое (по отношению к периоду световых колебаний) выполнение граничных условий на поверхности металлов. Существующая электронная теория не в состоянии объяснить даже тысячной доли коэффициента отражения.

3. Заряды, их потенциалы и массы

Вернемся к потенциалам полей в кулоновской калибровке:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок; Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок; Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.1)

Условие для градиентной инвариантности имеет вид:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.2)

Это условие можно заменить эквивалентным:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.3)

Поскольку ток связан с зарядом простым соотношением j=c , аналогичные уравнения мы можем записать и для тока:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.4)

Сопоставляя уравнения (3.1), (3.3) и (3.4) мы получим уравнение для векторного потенциала, описывающего электромагнитное излучение:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.5)

где Aw – векторный потенциал, описывающий электромагнитную волну.

Теперь мы можем обсудить полученные результаты и дать классификацию полей в классической электродинамике.

1. Инерциальные частицы (масса покоя отлична от нуля, индекс полей и потенциалов “k” , от слова “кирхгофовский”). В работе [3] мы показали, что любая заряженная частица, имеющая инерциальную массу покоя mo, обладает электромагнитной массой. Как известно, кулоновские силы стремятся “разорвать” заряженную частицу на части из-за сил кулоновского отталкивания частей заряда друг от друга. По этой причине учеными была выдвинута плодотворная гипотеза. Масса покоя заряженной частицы должна складываться из двух масс:

mo=me+mn

где: me – электромагнитная масса заряда; mn– масса неэлектромагнитного происхождения, которая отвечает за силы, удерживающие заряд от распада на части. Неэлектромагнитная масса может иметь отрицательный знак.

Поэтому мы можем записать для инерциальной заряженной частицы [3]:

mo=mek+mnk (3.6)

где: mnk– масса неэлектромагнитного происхождения, ответственная за устойчивость заряда; mek– электромагнитная масса, определяемая формулой:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.7)

Как показано в [3] , электромагнитная масса обладает всеми свойствами стандартной инерциальной массы.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.8)

Приведенные выше результаты справедливы, если потенциалы поля заряда описываются уравнениями Пуассона [3]:

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.9)

Инерциальные заряды не могут непосредственно сами излучать электромагнитную волну. Это положение подтверждается результатами исследований, проведенных в [4].

2. Безинерциальные частицы (масса покоя равна нулю; индекс полей и потенциалов “n”, от слова “некирхгофовский”). Перейдем теперь к анализу безинерциального заряда. Для определенности мы будем считать, что размеры такого заряда значительно меньше размеров известных частиц. Мы имеем право применить к этим зарядам рассуждения, изложенные выше. Причина в том, что потенциалы этих зарядов также удовлетворяют уравнению Пуассона (уравнения (3.2) и (3.4)).

Поскольку безинерциальные частицы движутся с постоянной скоростью (скоростью света), мы можем предположить, что их масса покоя равна нулю. Отсюда следует вывод, что масса неэлектромагнитного происхождения этих зарядов имеет ту же величину, что электромагнитная, но знак неэлектромагнитной массы отрицательный.

mon=men+mnn=0 (3.10)

Именно это важное условие обеспечивает их “безинерциальность” и устойчивость от распада. В то же время, электрическое и магнитное поля этих зарядов не являются “запаздывающими” в обычном понимании этого термина. Поля этих зарядов движутся всегда синхронно с зарядом, не испытывая задержки, которая должна была бы зависеть от расстояния до движущегося заряда. Например, в рассмотренной картине распространения электромагнитной энергии в коаксиальной линии поля Е и Н имеют мгновеннодействующий характер. В этом смысле, свойства полей безинерциальных зарядов занимают “промежуточное” положение между свойствами полей инерциальных зарядов и свойствами полей электромагнитной волны в свободном пространстве.

Здесь классическая электродинамика смеется над язычески наивным постулатом “о конечной скорости распространения взаимодействий”. В работе [5] мы показали пустоту содержания этого постулата. Пока отсутствует четкое определение понятия “взаимодействие”, ни о каких “скоростях” его распространения не может идти речь. (см. Приложение).

Запишем уравнения для потенциалов полей безинерциальных зарядов.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок; Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.11)

3. Электромагнитная волна (масса покоя равна нулю; индекс полей и потенциалов “w”). Электромагнитная волна это особый вид материи (или, если кому-то это больше по душе: особое состояние эфира, вакуума и т.д.), который после излучения существует самостоятельно, независимо от источников, которые излучили электромагнитную волну. В отличие от полей зарядов, которые были рассмотрены выше, поля и потенциалы электромагнитной волны являются всегда запаздывающими и вихревыми. Запишем уравнение для векторного потенциала электромагнитной волны.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.12)

где jсмещ– ток смещения, образованный электрическим полем.

Из этого уравнения следует, что источником электромагнитного излучения (волн) служит не ток из электронов проводимости, а электрическое поле, созданное безинерциальными зарядами. Это полевая модель излучения, которая противостоит токовой модели. В токовой модели электромагнитная волна формируется не полем, а током. Вне этого тока волна существует уже как самостоятельный объект.

Вернемся к уравнению (3.12). Подействуем на него оператором дивергенции (div). Левая часть уравнения обратится в нуль, поскольку divAw=0. Правая часть уравнения, как легко видеть, есть условие реализуемости градиентной инвариантности (2.1).

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.13)

Уравнение (3.12) удовлетворяет закону сохранения пойнтинговского типа.

Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок(3.14)

где: Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок- плотность потока электромагнитного излучения; Безинерциальные заряды и токи. Гипотеза об эквивалентности 2-х калибровок- плотность энергии электромагнитной волны;

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: