Xreferat.com » Рефераты по математике » Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Министерство науки и образования Украины

Сумской государственный университет

Механико-математический факультет

Кафедра информатики


Точные методы численного решения систем линейных алгебраических уравнений”


Сумы 2006

Содержание


Постановка задачи

1. Введение

2. Точные методы решения СЛАУ

3. Практическая реализация метода Халецкого

3.1 Программа на языке Pascal

3.2 Решение в Excel

Заключение

Литература

Приложение


Постановка задачи


Решить систему линейных алгебраических уравнений, используя точный метод численного решения (схему Халецкого).


1. Введение


Существует несколько способов решения таких систем, которые в основном делятся на два типа: 1) точные методы, представляющие собой конечные алгоритмы для вычисления корней системы, 2) итерационные методы, позволяющие получать корни системы с заданной точностью путем сходящихся бесконечных процессов.

Для того чтобы система линейных алгебраических уравнений имела решение, необходимо и достаточно, чтобы ранг основной матрицы был равен рангу расширенной матрицы. Если ранг основной матрицы равен рангу расширенной матрицы и равен числу неизвестных, то система имеет единственное решение. Если ранг основной матрицы равен рангу расширенной матрицы, но меньший числа неизвестных, то система имеет бесконечно решений.

Пример системы линейных уравнений:


Точные методы численного решения систем линейных алгебраических уравнений


Или в матричном виде: Точные методы численного решения систем линейных алгебраических уравнений,


где Точные методы численного решения систем линейных алгебраических уравненийматрица коэффициентов системы;


Точные методы численного решения систем линейных алгебраических уравнений - вектор неизвестных; Точные методы численного решения систем линейных алгебраических уравнений- вектор свободных членов.

2. Точные методы решения СЛАУ


Метод главных элементов.

Пусть дана система линейных алгебраических уравнений. Рассмотрим расширенную матрицу, состоящую из коэффициентов системы a[i,j] и свободных членов b[i]. Метод главных элементов - это обобщение метода исключения переменных (метода Гаусса). Обозначим матрицу, состоящую из коэффициентов при неизвестных и столбца свободных членов исходной системы за M.

Выбираем наибольший по модулю элемент, не принадлежащий столбцу свободных членов. Пусть это будет . Этот элемент называется главным элементом, а строка, в которой он находится, называется главной строкой.

Вычисляются множители:



Далее производим следующие преобразования: к каждой неглавной строке прибавим главную строку, умноженную на соответствующий множитель для этой строки. В результате мы получим матрицу, у которой q-й столбец состоит из нулей. Отбросим этот столбец и главную p-ю строку, получим новую матрицу с меньшим на единицу числом строк и столбцов. Над матрицей повторяем те же операции, после чего получаем матрицу и т.д. Таким образом, мы построим последовательность матриц



последняя, из которых представляет двучленную матрицу - строку, её также будем считать главной строкой. Для определения неизвестных объединяем в систему все главные строки, начиная с последней. После надлежащего изменения нумерации неизвестных получается система с треугольной матрицей, из которой легко шаг за шагом найти неизвестные данной системы.

Заметим, что метод Гаусса является частным случаем, метода главных элементов, а схема метода Гаусса получается, если за главный элемент всегда выбирать левый верхний элемент соответствующей матрицы. Запрограммировать метод главных элементов непросто, поэтому чтобы уменьшить вычислительную погрешность, применяют метод Гаусса с выбором главного элемента. Необходимое условие применения метода главных элементов: определитель системы не равен нулю.

Метод квадратных корней

Метод квадратных корней разработан для решения линейных систем с симметричной матрицей коэффициентов. Пусть дана линейная система


Ax=b,


где или (симметрическая матрица).

Симметричную матрицу можно представить в виде произведения двух транспонированных между собой треугольных матриц

A=T'*T,



Перемножим матрицы T' и T. Из T' i-ю строку из T j-тый столбец, получим следующие уравнения:



Последовательно находим:




После подстановки в систему, последняя распадается на две системы с треугольными матрицами.



Решим систему T'*y=b. Запишем её в развёрнутом виде:



Отсюда последовательно находим


Решаем систему T*x=y, записав её в развёрнутом виде:



Решение имеет вид



Прямым ходом с помощью формул вычисляются t[i,j] и y[i], обратным ходом по формуле находятся x[i].Текущий контроль прямого хода осуществляется с помощью так называемых "контрольных сумм", которые представляют собой сумму элементов строк матрицы исходной системы, включая свободные члены. Если над контрольными суммами в каждой строке проделывать те же операции, что и над остальными элементами этой строки, то при отсутствии ошибок в вычислениях сумма преобразованных элементов равна преобразованной сумме. Обратный ход контролируется следующим образом: если в формулах для определения вместо столбца свободных членов взять соответствующие элементы из столбца контрольных сумм, то получим новые неизвестные, которые обозначим'.

При отсутствии ошибок '-=1.

Метод Халецкого

Запишем систему линейных уравнений в матричном виде:


Точные методы численного решения систем линейных алгебраических уравнений,


где A=[aij] – квадратная матрица порядка n и


Точные методы численного решения систем линейных алгебраических уравнений, Точные методы численного решения систем линейных алгебраических уравнений - векторы-столбцы.


Представим матрицу A в виде произведения нижней треугольной матрицы B=[bij] и верхней треугольной матрицы C=[cij] с единичной диагональю Точные методы численного решения систем линейных алгебраических уравнений, где


Точные методы численного решения систем линейных алгебраических уравнений и Точные методы численного решения систем линейных алгебраических уравнений.


Тогда элементы bij и cij определяются по формулам


Точные методы численного решения систем линейных алгебраических уравнений и Точные методы численного решения систем линейных алгебраических уравнений


Отсюда искомый вектор x может быть вычислен из уравнений Точные методы численного решения систем линейных алгебраических уравнений и Точные методы численного решения систем линейных алгебраических уравнений.

Так как матрицы B и C – треугольные, то системы легко решаются:


Точные методы численного решения систем линейных алгебраических уравнений и Точные методы численного решения систем линейных алгебраических уравнений


Из этих двух формул видно, что числа yi выгодно вычислять вместе с коэффициентами cij. Этот метод получил название схемы Халецкого. В схеме применяется обычный контроль с помощью сумм. Если матрица A – симметрическая aij=aji, то


Точные методы численного решения систем линейных алгебраических уравнений


Пример. Решить систему


Точные методы численного решения систем линейных алгебраических уравнений


Решение.

В первый раздел таблицы впишем матрицу коэффициентов системы, ее свободные члены и контрольные суммы. Далее так как Точные методы численного решения систем линейных алгебраических уравнений Точные методы численного решения систем линейных алгебраических уравнений, то первый столбец из раздела 1 переносится в первый столбец раздела II. Чтобы получить первую строку раздела II, делим все элементы первой строки раздела I на элементТочные методы численного решения систем линейных алгебраических уравнений, в нашем случае на 3.

Имеем:

Точные методы численного решения систем линейных алгебраических уравнений;

Точные методы численного решения систем линейных алгебраических уравнений;

Точные методы численного решения систем линейных алгебраических уравнений;

Точные методы численного решения систем линейных алгебраических уравнений;

Точные методы численного решения систем линейных алгебраических уравнений.


Переходим к заполнению второго столбца раздела II, начиная со второй строки. Пользуясь формулами, определяем Точные методы численного решения систем линейных алгебраических уравнений:


Точные методы численного решения систем линейных алгебраических уравнений;

Точные методы численного решения систем линейных алгебраических уравнений;

Точные методы численного решения систем линейных алгебраических уравнений.


Далее определяя по формулам, заполняем вторую сетку для раздела II:


Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений


Затем переходим к третьему столбцу, вычисляя его элементы Точные методы численного решения систем линейных алгебраических уравнений и Точные методы численного решения систем линейных алгебраических уравнений по формулам и т.д., пока не будет заполнена вся таблица раздела II. Таким образом, заполнение раздела II происходит способом “елочки”: столбец - строка, столбец - строка и т.д.

В разделе Ш, пользуясь формулами, определяем Точные методы численного решения систем линейных алгебраических уравнений и Точные методы численного решения систем линейных алгебраических уравнений.

Текущий контроль осуществляется с помощью столбца ∑, над которым производятся те же действия, что и над столбцом свободных членов.


Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

I

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

3 1 -1 2 6 11
I

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

-5 1 3 -4 -12 -17
I

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

2 0 1 -1 1 3
I

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

1 -5 3 -3 3 -1
II

Точные методы численного решения систем линейных алгебраических уравнений│1

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

3│1 0.333333 -0.333333 0.666667 2 3.666667
II

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений│1

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

-5 2.666667│1 0.5 -0.25 -0.75 0.5
II

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений│1

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

2 -0.666667 2│1 -1.25 -1.75 -2
II

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений│1

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

1 -5.333333 6 2.5│1 3 4
III

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

2 1
III

Точные методы численного решения систем линейных алгебраических уравнений

Точные методы численного решения систем линейных алгебраических уравнений

-0.75 -1
III y3

Точные методы численного решения систем линейных алгебраических уравнений

-1.75 2
III y4

Точные методы численного решения систем линейных алгебраических уравнений

3 3

3. Практическая реализация метода Халецкого


3.1 Программа на языке Pascal


program kursovaya;

uses crt;

const sizemat=10;

type mattype=array[1..sizemat,1..sizemat] of double;

mattype1=array[1..sizemat] of double;

{Процедура для вывода матрицы на экран}

procedure writemat (var a:mattype; n,m:byte);

var i,j:byte;

begin

writeln;

for i:=1 to n do

begin

for j:=1 to m do

write(a[i,j]:7:3,' ');

writeln

end;

end;

{Процедура для ввода значений элементов матрицы}

procedure inputmat (var a:mattype;var d:mattype1; var n:byte);

var i,j:byte;

begin

writeln;

write ('Введите размер матрицы = ');

readln(n);

writeln;

writeln('Введите матрицу:');

writeln;

for i:=1 to n do

for j:=1 to n

Похожие рефераты: