Xreferat.com » Рефераты по математике » Непрерывное Вейвлет-преобразование

Непрерывное Вейвлет-преобразование

ОГЛАВЛЕНИЕ

1. ВВЕДЕНИЕ

2. ПОСТАНОВКА ЗАДАЧИ

3. ПОДХОДЫ К АНАЛИЗУ НЕСТАЦИОНАРНЫХ СИГНАЛОВ

3.1 Методы обработки нестационарных сигналов

3.2 Краткий обзор преобразования Фурье

3.3 Основные положения вейвлет-анализа

3.3.1 Методы вычисления непрерывного вейвлет преобразования

3.3.1.1 Во временной области

3.3.1.2 В частотной области

3.3.2 Выбор материнского вейвлета

4 ОПРЕДЕЛЕНИЕ УЗЛОВЫХ ТОЧЕК ЭКГ НА ОСНОВЕ НЕПРЕРЫВНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ

4.1 Стандарты описания и обозначения ЭКГ.

4.2 Постановка задачи идентификации.

4.3 Построение модели идеальной ЭКГ.

4.4 Анализ модели ЭКГ

4.4.1 В системе Matlab

4.4.2 С использованием “Vision”

4.4.3 Сравнительный анализ полученных результатов.

5. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

5.1. Структура программы

5.2. Форматы данных

5.3 Тестирование

1.ВВЕДЕНИЕ

На сегодняшний день одним из самых распространенных методов диагностики и распознавания сердечно-сосудистых заболеваний является электрокардиография. Сигнал ЭКГ характеризуется набором зубцов, по временным и амплитудным параметрам которых ставится диагноз. До недавнего времени процедуру нахождения характеристик зубцов выполнял врач-кардиолог, использую при этом только чертежные принадлежности. Такая схема достаточно проста и надежна, но требует много времени, и она работала в течении долгого времени из-за отсутствия альтернативных подходов к решению данной задачи.

С развитием компьютеров стали появляться специализированные комплексы, позволяющие выявлять сердечные заболевания, на основе автоматизированного анализа временных параметров ЭКГ. На сегодняшний день известны разработки фирм MedIT, Innomed Medical Co. Ltd. и другие. Кардиографы этих компаний выполняют основные операции, необходимые для работы в реальных условиях. Цены на них колеблются в диапазоне от 1’500$ до 15’000$.

В то же время, в нашей стране технический уровень специалистов достаточно высок, чтобы разработать собственный аналог подобных комплексов, стоящий при этом дешевле западных.

Программное обеспечение является одной из частей кардиографической системы. Данный раздел включает в себя три основных этапа: фильтрация сигналов, анализ данных и постановка диагноза на основе этих характеристик.

Данная работа посвящена изучению вопроса идентификации особенностей ЭКГ, как одного из шагов комплексного анализа сигнала. Это весьма важный этап так как допущение ошибки здесь сильно сказывается на врачебном заключении.

2. ПОСТАНОВКА ЗАДАЧИ

В рамках задачи предобработки и вычислении параметров ЭКГ в компьютерном кардиологическом комплексе, необходимо разработать модуль анализа основных характеристик электрокардиограммы человека на базе алгоритма непрерывного вейвлет-преобразования.

Для этого следует:

изучить форму, стандарты описания и обозначения ЭКГ; построить модель идеальной ЭКГ провести сравнительный анализ эффективности системы Matlab и разработанного модуля проанализировать временные затраты с учетом параметров съема ЭКГ и аппаратного обеспечения

При проведении исследований использовать систему Matlab 5.0, для разработки модуля использовать среду программирования Delphi 5.0.

3. ПОДХОДЫ К АНАЛИЗУ НЕСТАЦИОНАРНЫХ СИГНАЛОВ 3.1. Методы обработки нестационарных сигналов

Большинство медицинских сигналов имеет сложные частотно-временные характеристики. Как правило, такие сигналы состоят из близких по времени, короткоживущих высокочастотных компонент и долговременных, близких по частоте низкочастотных компонент.

Для анализа таких сигналов нужен метод, способный обеспечить хорошее разрешение и по частоте, и по времени. Первое требуется для локализации низкочастотных составляющих, второе – для разрешения компонент высокой частоты.

Вейвлет преобразование стремительно завоевывает популярность в столь разных областях, как телекоммуникации, компьютерная графика, биология, астрофизика и медицина. Благодаря хорошей приспособленности к анализу нестационарных сигналов оно стало мощной альтернативой преобразованию Фурье в ряде медицинских приложений. Так как многие медицинские сигналы нестационарны, методы вейвлет анализа используются для распознавания и обнаружения ключевых диагностических признаков.

Преобразование Фурье представляет сигнал, заданный во временной области, в виде разложения по ортогональным базисным функциям (синусам и косинусам), выделяя таким образом частотные компоненты. Недостаток преобразования Фурье заключается в том, что частотные компоненты не могут быть локализованы во времени, что накладывает ограничения на применимость данного метода к ряду задач (например, в случае изучения динамики изменения частотных параметров сигнала на временном интервале).

Существует два подхода к анализу нестационарных сигналов такого типа. Первый – локальное преобразование Фурье (short-time Fourier transform). Следуя по этому пути, мы работаем с нестационарным сигналом, как со стационарным, предварительно разбив его на сегменты (окна), статистика которых не меняется со временем. Второй подход – вейвлет преобразование. В этом случае нестационарный сигнал анализируется путем разложения по базисным функциям, полученным из некоторого прототипа путем сжатий, растяжений и сдвигов. Функция прототип называется материнским, или анализирующим вейвлетом.

3.2 Краткий обзор преобразования Фурье

Классическим методом частотного анализа сигналов является преобразование Фурье, суть которого можно выразить формулой (1)

Непрерывное Вейвлет-преобразование

Результат преобразования Фурье – амплитудно-частотный спектр, по которому можно определить присутствие некоторой частоты в исследуемом сигнале.

В случае, когда не встает вопрос о локализации временного положения частот, метод Фурье дает хорошие результаты. Но при необходимости определить временной интервал присутствия частоты приходится применять другие методы.

Одним из таких методов является обобщенный метод Фурье (локальное преобразование Фурье). Этот метод состоит из следующих этапов:

1. в исследуемой функции создается “окно” – временной интервал, для которого функция f(x)¹ 0, и f(x)=0 для остальных значений;

2. для этого “окна” вычисляется преобразование Фурье

3. “ окно” сдвигается, и для него также вычисляется преобразование Фурье

“Пройдя” таким “окном” вдоль всего сигнала, получается некоторая трехмерная функция, зависящая от положения “окна” и частоты.

Данный подход позволяет определить факт присутствия в сигнале любой частоты, и интервал ее присутствия. Это значительно расширяет возможности метода по сравнению с классическим преобразованием Фурье, но существуют и определенные недостатки. Согласно следствиям принципа неопределенности Гейзенберга в данном случае нельзя утверждать факт наличия частоты w 0 в сигнале в момент времени t0 - можно лишь определить, что спектр частот (w 1,w 2) присутствует в интервале (t1,t2). Причем разрешение по частоте (по времени) остается постоянным вне зависимости от области частот (времен), в которых производится исследование. Поэтому, если, например, в сигнале существенна только высокочастотная составляющая, то увеличить разрешение можно только изменив параметры метода. В качестве метода, не обладающего подобного рода недостатками, был предложен аппарат вейвлет анализа. [2]

3.3 Основные положения вейвлет-анализа

Различают дискретный и непрерывный вейвлет анализ, аппарат которых можно применять как для непрерывных, так и для дискретных сигналов.

Cигнал анализируется путем разложения по базисным функциям, полученным из некоторого прототипа путем сжатий, растяжений и сдвигов (2). Функция-прототип называется анализирующим (материнским) вейвлетом.

Вейвлет - функция должна удовлетворять 2-м условиям:

1. Среднее значение (интеграл по всей прямой) равен 0.

2. Функция быстро убывает при t ® ∞.

Обычно, функция-вейвлет обозначается буквой ψ.

В общем случае вейвлет преобразование функции f(t) выглядит так:

Непрерывное Вейвлет-преобразование(2)

где t – ось времени, x – момент времени, s – параметр, обратный частоте, a (*) – означает комплексно-сопряженное.

Непрерывное Вейвлет-преобразование

Рис 1. Примеры вейвлетов.

Главным элементом в вейвлет анализе является функция-вейвлет. Вообще говоря, вейвлетом является любая функция, отвечающая двум вышеуказанным условиям. Наибольшей популярностью пользуются два изображенных на рисунке 1 вейвлета:

Сверху изображен вейвлет “сомбреро” (Mexican Hat), названный так благодаря своему внешнему виду. На нижней части рисунка 1 изображен вейвлет Морле. График любого вейвлета выглядит примерно также, как и вейвлет Морле. Заметим, что вейвлет Морле – комплекснозначный, на рисунке изображены его вещественная и мнимая составляющие.

Итак, у нас имеется некоторая функция f(t), зависящая от времени. Результатом ее вейвлет-анализа будет некоторая функция W(x,s), которая зависит уже от двух переменных: от времени и от частоты (обратно пропорционально). Для каждой пары x и s рецепт вычисления вейвлет преобразования следующий:

Функция вейвлет растягивается в s раз по горизонтали и в 1/s раз по вертикали. Далее он сдвигается в точку x. Полученный вейвлет обозначается ψ(x,s). Производится усреднение в окрестности точки s при помощи ψ(x,s).

В результате “вырисовывается” вполне наглядная картина, иллюстрирующая частотно-временные характеристики сигнала. По оси абсцисс откладывается время, по оси ординат – частота (иногда размерность оси ординат выбирается так: log(1/s), где s-частота), а абсолютное значение вейвлет преобразования для конкретной пары x и s определяет цвет, которым данный результат будет отображен (чем в большей степени та или иная частота присутствует в сигнале в конкретный момент времени, тем темнее будет оттенок).

Непрерывное Вейвлет-преобразование

Рис 2. Вейвлет преобразование стационарного сигнала.

Данный рисунок показывает результаты вейвлет анализа для сигнала, представляющим из себя наложение двух синусоид различной частоты. Частотные характеристики данного сигнала не меняются во времени (сигнал стационарный), что хорошо видно на верхней части рисунка 2.

Непрерывное Вейвлет-преобразование

Рис 3. Сравнение методов анализа.

По рисунку 3 удобно сравнить результаты, которые дают преобразование Фурье и вейвлет преобразование. Исходный сигнал изображен на рис (3a). Как видно из рис (3c) преобразование Фурье дает информацию о том спектре частот, который присутствует в сигнале в промежутке времени от 0 до 1 сек., при этом нам неизвестно когда именно та или иная частота реально присутствовала в сигнале.

В то же время вейвлет преобразование (3b) дает исчерпывающую картину динамики изменения частотных характеристик во времени. Все это указывает на то, что вейвлет преобразование существенно более информативно по сравнению с преобразованием Фурье.

3.3.1 Методы вычисления непрерывного вейвлет-преобразования.

Существует два разных пути проведения вейвлет преобразования. Речь идет о расчетах во временной и частотной областях. При работе во временной области мы имеем дело с функциями, аргументами которых являются временные параметры, а в случае частотной – частотные. В частотной области используется механизм быстрого преобразования Фурье. [5c]

3.3.1.1 Во временной области

Прежде всего, нам необходимо определить материнский вейвлет. Допустим, мы выбрали некоторую функцию, удовлетворяющую необходимым условиям: ψ0(η), где η – безразмерный период.

Итак, нам дана временная серия X, со значениями xn, в моменты времени nÎ [0,N-1], где N – количество измерений. Каждая величина разделена по времени на постоянную величину dt. Получив основную формулу для материнского вейвлета, необходимо иметь возможность изменять размеры вейвлета. Для этого строится так называемый "масштабированный" вейвлет который будет иметь вид:

Непрерывное Вейвлет-преобразование (3)

s – параметр, обратный частоте.

Вычисление вейвлет преобразования является сверткой искомой

Похожие рефераты: