Xreferat.com » Рефераты по математике » 10 способов решения квадратных уравнений

10 способов решения квадратных уравнений

Узнай стоимость написания твоей работы
Нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.)? Обратитесь к нашим специалистам! Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее Гарантии Отзывы

Копьевская сельская средняя общеобразовательная школа


10 способов решения квадратных уравнений


Автор: Реутова Екатерина Викторовна, 11 кл.

Руководитель: Патрикеева Галина Анатольевна,

учитель математики


с.Копьево, 2007


Содержание


1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

1.2 Как составлял и решал Диофант квадратные уравнения

1.3 Квадратные уравнения в Индии

1.4 Квадратные уравнения у ал- Хорезми

1.5 Квадратные уравнения в Европе XIII - XVII вв

1.6 О теореме Виета

2. Способы решения квадратных уравнений

Заключение

Литература


1. История развития квадратных уравнений


1.1 Квадратные уравнения в Древнем Вавилоне


Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:


X2 + X = ѕ; X2 - X = 14,5


Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.


1.2 Как составлял и решал Диофант квадратные уравнения.


В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.


Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 - х. Разность между ними 2х.

Отсюда уравнение:


(10 + х)(10 - х) = 96

или же:

100 - х2 = 96

х2 - 4 = 0 (1)


Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения


у(20 - у) = 96,

у2 - 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).


1.3Квадратные уравнения в Индии


Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:


ах2 + bх = с, а > 0. (1)


В уравнении (1) коэфиценты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 13.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).


10 способов решения квадратных уравнений


Соответствующее задаче 13 уравнение:

(x/8)2 + 12 = x


Бхаскара пишет под видом:

х2 - 64х = -768


и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:


х2 - 64х + 322 = -768 + 1024,

(х - 32)2 = 256,

х - 32 = ± 16,

х1 = 16, х2 = 48.


1.4 Квадратные уравнения у ал – Хорезми


В алгебраическом трактате ал - Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах2 + с = bх.

2) «Квадраты равны числу», т.е. ах2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т.е. ах2 + с = bх.

5) «Квадраты и корни равны числу», т.е. ах2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах2.

Для ал - Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал - джабр и ал - мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида

ал - Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал - Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.


Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал - Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.


1.5 Квадратные уравнения в Европе XIII - XVII вв


Формулы решения квадратных уравнений по образцу ал - Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI - XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:


х2 + bx = с,


при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.


1.6 О теореме Виета


Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D, умноженное на A - A2, равно BD, то A равно В и равно D».

Чтобы понять Виета, следует вспомнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же В,D - коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место


(а + b)х - х2 = ab,

т.е.

х2 - (а + b)х + аb = 0,

то

х1 = а, х2 = b.


Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.


2. Способы решения квадратных уравнений


Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно в своей работе я разобрала каждый из них.


1. СПОСОБ: Разложение левой части уравнения на множители.


Решим уравнение

х2 + 10х - 24 = 0.


Разложим левую часть на множители:

х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).


Следовательно, уравнение можно переписать так:

(х + 12)(х - 2) = 0


Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х - 24 = 0.

2. СПОСОБ: Метод выделения полного квадрата.


Решим уравнение х2 + 6х - 7 = 0.


Выделим в левой части полный квадрат.

Для этого запишем выражение х2 + 6х в следующем виде:


х2 + 6х = х2 + 2• х • 3.


В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как


х2 + 2• х • 3 + 32 = (х + 3)2.


Преобразуем теперь левую часть уравнения

х2 + 6х - 7 = 0,


прибавляя к ней и вычитая 32. Имеем:

х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.


Таким образом, данное уравнение можно записать так:

(х + 3)2 - 16 =0, (х + 3)2 = 16.


Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.


3. СПОСОБ: Решение квадратных уравнений по формуле.


Умножим обе части уравнения

ах2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:


4а2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,

(2ax + b)2 = b2 - 4ac,

2ax + b = ± √ b2 - 4ac,

2ax = - b ± √ b2 - 4ac,

10 способов решения квадратных уравнений


Примеры.


а) Решим уравнение: 4х2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,

D > 0, два разных корня;


10 способов решения квадратных уравнений10 способов решения квадратных уравнений


Таким образом, в случае положительного дискриминанта, т.е. при

b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.


б) Решим уравнение: 4х2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,

D = 0, один корень;


10 способов решения квадратных уравнений10 способов решения квадратных уравнений

Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение

ах2 + bх + с = 0 имеет единственный корень,


в) Решим уравнение: 2х2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.


Данное уравнение корней не имеет.

Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0,

уравнение ах2 + bх + с = 0 не имеет корней.


Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.


4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид


х2 + px + c = 0. (1)


Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

10 способов решения квадратных уравненийx1 x2 = q,

x1 + x2 = - p


Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.


Например,

x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0;

x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0.


б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .


Например,

x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0;

x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.


5. СПОСОБ: Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение


ах2 + bх + с = 0, где а ≠ 0.


Умножая обе его части на а, получаем уравнение


а2х2 + аbх + ас = 0.


Пусть ах = у, откуда х = у/а; тогда приходим к уравнению


у2 + by + ас = 0,

равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета.

Окончательно получаем


х1 = у1/а и х1 = у2/а.


При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.


Пример.

Решим уравнение 2х2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у2 – 11у + 30 = 0.

Согласно теореме Виета


10 способов решения квадратных уравнений10 способов решения квадратных уравнений10 способов решения квадратных уравнений10 способов решения квадратных уравнений10 способов решения квадратных уравненийу1 = 5 х1 = 5/2 x1 = 2,5

у2 = 6 x2 = 6/2 x2 = 3.

Ответ: 2,5; 3.


6. СПОСОБ: Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение


ах2 + bх + с = 0, где а ≠ 0.


1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,

х2 = с/а.


Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение


x2 + b/a • x + c/a = 0.


10 способов решения квадратных уравнений Согласно теореме Виета

x1 + x2 = - b/a,

x1x2 = 1• c/a.


По условию а – b + с = 0, откуда b = а + с. Таким образом,


10 способов решения квадратных уравненийx1 + x2 = - а + b/a= -1 – c/a,

x1x2 = - 1• ( - c/a),

т.е. х1 = -1 и х2 = c/a, что м требовалось доказать.


Примеры.

Решим уравнение 345х2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

х1 = 1, х2 = c/a = -208/345.

Ответ: 1; -208/345.


2)Решим уравнение 132х2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

х1 = 1, х2 = c/a = 115/132.

Ответ: 1; 115/132.


Б. Если второй коэффициент b = 2k – четное число, то формулу корней


10 способов решения квадратных уравнений


Пример.

Решим уравнение 3х2 — 14х + 16 = 0.

Решение. Имеем: а = 3, b = — 14, с = 16, k = — 7;

D = k2 – ac = (- 7)2 – 3 • 16 = 49 – 48 = 1, D > 0, два различных корня;


10 способов решения квадратных уравнений


Ответ: 2; 8/3

В. Приведенное уравнение


х2 + рх + q= 0


совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней


10 способов решения квадратных уравнений


10 способов решения квадратных уравнений


принимает вид:

Формулу (3) особенно удобно использовать, когда р — четное число.


10 способов решения квадратных уравнений


Пример. Решим уравнение х2 – 14х – 15 = 0.

Решение. Имеем: х1,2 =7±

Ответ: х1 = 15; х2 = -1.


7. СПОСОБ: Графическое решение квадратного уравнения.


10 способов решения квадратных уравнений


Если в уравнении


х2 + px + q = 0


перенести второй и третий члены в правую часть, то получим


х2 = - px - q.


Построим графики зависимости у = х2 и у = - px - q.

График первой зависимости - парабола, проходящая через начало координат. График второй зависимости -

прямая (рис.1). Возможны следующие случаи:

- прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квад- ратного уравнения;


10 способов решения квадратных уравнений


- прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;

- прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.


Примеры.

1) Решим графически уравнение х2 - 3х - 4 = 0 (рис. 2).

Решение. Запишем уравнение в виде х2 = 3х + 4.

Построим параболу у = х2 и прямую у = 3х + 4. Прямую

у = 3х + 4 можно построить по двум точкам М (0; 4) и

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: