Xreferat.com » Рефераты по математике » Вычисление определенного интеграла

Вычисление определенного интеграла

Екатеринбург

2006

Вычисление определенного интеграла


Введение


Задача численного интегрирования функций заключается в вычислении приближенного значения определенного интеграла:


Вычисление определенного интеграла, (1)


на основе ряда значений подынтегральной функции .{ f(x) |x=xk = f(xk) = yk}.

Формулы численного вычисления однократного интеграла называются квадратурными формулами, двойного и более кратного – кубатурными.

Обычный прием построения квадратурных формул состоит в замене подынтегральной функции f(x) на отрезке [a,b] интерполирующей или аппроксимирующей функцией g(x) сравнительно простого вида, например, полиномом, с последующим аналитическим интегрированием. Это приводит к представлению


Вычисление определенного интеграла


В пренебрежении остаточным членом R[f] получаем приближенную формулу


Вычисление определенного интеграла.

Обозначим через yi = f(xi) значение подинтегральной функции в различных точках Вычисление определенного интеграла на [a,b]. Квадратурные формулы являются формулами замкнутого типа, если x0=a , xn=b.

В качестве приближенной функции g(x) рассмотрим интерполяционный полином на Вычисление определенного интеграла в форме полинома Лагранжа:


Вычисление определенного интеграла,


где

Вычисление определенного интеграла, при этом Вычисление определенного интеграла, где Вычисление определенного интеграла - остаточный член интерполяционной формулы Лагранжа.

Формула (1) дает


Вычисление определенного интеграла, (2)


где


Вычисление определенного интеграла. (3)


В формуле (2) величины {Вычисление определенного интеграла} называются узлами, {Вычисление определенного интеграла} – весами, Вычисление определенного интеграла - погрешностью квадратурной формулы. Если веса {Вычисление определенного интеграла} квадратурной формулы вычислены по формуле (3), то соответствующую квадратурную формулу называют квадратурной формулой интерполяционного типа.

Подведем итог.

Веса {Вычисление определенного интеграла} квадратурной формулы (2) при заданном расположении узлов Вычисление определенного интеграла не зависят от вида подынтегральной функции.

В квадратурных формулах интерполяционного типа остаточный член Rn[f] может быть представлен в виде значения конкретного дифференциального оператора на функции f(x). Для Вычисление определенного интеграла


Вычисление определенного интеграла.


Для полиномов до порядка n включительно квадратурная формула (2) точна, т.е. Вычисление определенного интеграла. Наивысшая степень полинома, для которого квадратурная формула точна, называется степенью квадратурной формулы.

Рассмотрим частные случаи формул (2) и (3): метод прямоугольников, трапеций, парабол (метод Симпсона). Названия этих методов обусловлены геометрической интерпретацией соответствующих формул.


Метод прямоугольников

Определенный интеграл функции от функции f(x): Вычисление определенного интегралачисленно равен площади криволинейной трапеции, ограниченной кривыми у=0, x=a, x=b, y=f(x) (рисунок. 1).

Вычисление определенного интеграла

Рис. 1 Площадь под кривой y=f(x)


Для вычисления этой площади весь интервал интегрирования [a,b] разбивается на n равных подинтервалов длины h=(b-a)/n. Площадь под подынтегральной кривой приближенно заменяется на сумму площадей прямоугольников, как это показано на рисунке (2).


Вычисление определенного интеграла

Рис. 2 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников


Сумма площадей всех прямоугольников вычисляется по формуле


Вычисление определенного интеграла (4)


Метод, представленный формулой (4), называется методом левых прямоугольников, а метод, представленный формулой(5) – методом правых прямоугольников:


Вычисление определенного интеграла (5)


Погрешность вычисления интеграла определяется величиной шага интегрирования h. Чем меньше шаг интегрирования, тем точнее интегральная сумма S аппроксимирует значение интеграла I. Исходя из этого строится алгоритм для вычисления интеграла с заданной точностью. Считается, что интегральная сумма S представляет значение интеграла I c точностью eps, если разница по абсолютной величине между интегральными суммами Вычисление определенного интегралаи Вычисление определенного интеграла, вычисленными с шагом h и h/2 соответственно, не превышает eps.


Метод средних прямоугольников


Для нахождения определенного интеграла методом средних прямоугольников площадь, ограниченная прямыми a и b, разбивается на n прямоугольников с одинаковыми основаниями h, высотами прямоугольников будут точки пересечения функции f(x) с серединами прямоугольников (h/2). Интеграл будет численно равен сумме площадей n прямоугольников (рисунок 3).

Вычисление определенного интеграла

Рис. 3 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников


Вычисление определенного интеграла

Вычисление определенного интеграла,


n – количество разбиений отрезка [a,b].


Метод трапеций


Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у1, у2, у3,..уn, где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Вычисление определенного интеграла

Рис. 4 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольных трапеций.


Вычисление определенного интеграла


n – количество разбиений


Вычисление определенного интеграла

Вычисление определенного интеграла (6)


Погрешность формулы трапеций оценивается числом


Вычисление определенного интеграла


Погрешность формулы трапеций с ростом Вычисление определенного интеграла уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона


Если для каждой пары отрезков Вычисление определенного интеграла построить многочлен второй степени, затем проинтегрировать его на отрезке Вычисление определенного интеграла и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования [a,b] разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).


Вычисление определенного интеграла

Рис. 5 Функция y=f(x) на отрезке Вычисление определенного интеграла заменяется многочленом 2-го порядка


Вычисление определенного интегралаРассмотрим подынтегральную функцию Вычисление определенного интеграла на отрезке Вычисление определенного интеграла. Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y=Вычисление определенного интеграла в точках Вычисление определенного интеграла:

Вычисление определенного интеграла

Проинтегрируем Вычисление определенного интегралана отрезке Вычисление определенного интеграла.:


Вычисление определенного интеграла


Введем замену переменных:


Вычисление определенного интеграла


Учитывая формулы замены,


Вычисление определенного интеграла


Вычисление определенного интегралаВыполнив интегрирование, получим формулу Симпсона:


Вычисление определенного интеграла

Полученное для интеграла Вычисление определенного интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью Вычисление определенного интеграла, прямыми Вычисление определенного интеграла, Вычисление определенного интеграла и параболой, проходящей через точки Вычисление определенного интеграла На отрезке Вычисление определенного интегралаформула Симпсона будет иметь вид:


Вычисление определенного интеграла


В формуле параболы значение функции f(x) в нечетных точках разбиения х1, х3, ..., х2n-1 имеет коэффициент 4, в четных точках х2, х4, ..., х2n-2 - коэффициент 2 и в двух граничных точках х0=а, хn =b - коэффициент 1.


Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке [a, b] приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на [a, b] непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем


Вычисление определенного интеграла


где М - наибольшее значение Вычисление определенного интеграла на отрезке [a, b]. Так как n4 растет быстрее, чем n2, то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.


Пример

Вычислим интеграл Вычисление определенного интеграла

Этот интеграл легко вычисляется: Вычисление определенного интеграла

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции Вычисление определенного интеграла в точках разбиения Вычисление определенного интеграла, а также полуцелых точках Вычисление определенного интеграла.

По формуле средних прямоугольников получим Iпрям=0.785606 (погрешность равна 0.027%), по формуле трапеций Iтрап=0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл


Вычисление определенного интеграла,


но теперь по формуле Симпсона при n=4. Разобьем отрезок [0, 1] на четыре равные части точками х0=0, х1=1/4, х2=1/2, х3=3/4, х4=1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у0=1,0000, у1=0,8000, у2=0,6667, у3=0,5714, у4=0,5000.

По формуле Симпсона получаем


Вычисление определенного интеграла


Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f(4)(x)=24/(1+x)5 , откуда следует, что на отрезке [0, 1] Вычисление определенного интеграла. Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880Ч 44)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.


Сравнение методов по точности


Сравним методы по точности, для этого произведем вычисления интеграла функций y=x, y=x+2, y=x2, при n=10 и n=60, a=0, b=10. Точное значение интегралов составляет соответственно: 50, 70, 333.(3)


таблица 1

метод n x x+2 x2
Метод средних прямоугольников 10 50 70 332.5
Метод правых прямоугольников 10 45 65 285
Метод трапеции 10 50 70 335
Формула Симпсона 10 50 70 333.333





Метод средних прямоугольников 60 50 70 333.310
Метод правых прямоугольников 60 49.1667 69.1667 325.046
Метод трапеции 60 50 70 333.379
Формула Симпсона 60 50 70 333.333

Из таблицы 1 видно, что наиболее точным является интеграл, найденный по формуле Симпсона, при вычислении линейных функций y=x, y=x+2 также достигается точность методами средних прямоугольников и методом трапеций, метод правых прямоугольников является менее точным. Из таблицы 1 видно, что при увеличении количества разбиений n (увеличения числа интеграций) повышается точность приближенного вычисления интегралов

Задание на лабораторную работу


Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций:

f(x)=x


f(x)=x2

f(x)= x3

f(x)= x4


на отрезке [0, 1] с шагом Вычисление определенного интеграла, Вычисление определенного интеграла, Вычисление определенного интеграла

f(x)=Вычисление определенного интеграла

f(x)=Вычисление определенного интеграла

f(x)=Вычисление определенного интеграла

Выполнить вариант индивидуального задания (таблица 2)


Таблица 2 Индивидуальные варианты задания

Функция f(x) Отрезок интегрирования [a,b]
1

Вычисление определенного интеграла

[1;3]
2

Вычисление определенного интеграла

[1;3]
3

Вычисление определенного интеграла

[0;2]
4

Вычисление определенного интеграла

[2;4]
5

Вычисление определенного интеграла

[1;3]
6

Вычисление определенного интеграла

[0;2]
7

Вычисление определенного интеграла

[0;2]
8

Вычисление определенного интеграла

[1;3]
9

Вычисление определенного интеграла

[0;2]
10

Вычисление определенного интеграла

[0;2]
11

Вычисление определенного интеграла

[1;3]
12

Вычисление определенного интеграла

[1;3]
13

Вычисление определенного интеграла

[0;2]
14

Вычисление определенного интеграла

[2;4]
15

Вычисление определенного интеграла

[1;3]
16

Вычисление определенного интеграла

[0;2]
17

Вычисление определенного интеграла

[0;2]
18

Вычисление определенного интеграла

[1;3]
19

Вычисление определенного интеграла

[0;2]
20

Вычисление определенного интеграла

[0;2]
21

Вычисление определенного интеграла

[1;3]
22

Вычисление определенного интеграла

[1;3]
23

Вычисление определенного интеграла

[0;2]
24

Вычисление определенного интеграла

[2;4]
25

Вычисление определенного интеграла

[1;3]
26

Вычисление определенного интеграла

[0;2]
27

Вычисление определенного интеграла

[0;2]
28

Вычисление определенного интеграла

[1;3]
29

Вычисление определенного интеграла

[0;2]
30

Вычисление определенного интеграла

[0;2]

Провести сравнительный анализ методов.

Вычисление определенного интеграла: Методические указания к лабораторной работе по дисциплине «Вычислительная математика» / сост. И.А.Селиванова. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. 14 с.

Указания предназначены для студентов всех форм обучения специальности 230101 – «Вычислительные машины, комплексы, системы и сети» и бакалавров направления 230100 – «Информатика и вычислительная техника». Составитель Селиванова Ирина Анатольевна

Похожие рефераты: