Графическое решение уравнений, неравенств, систем с параметром
I. Введение
II. Уравнения с параметрами.
§ 1. Определения.
§ 2. Алгоритм решения.
§ 3. Примеры.
III. Неравенства с параметрами.
§ 1. Определения.
§ 2. Алгоритм решения.
§ 3. Примеры.
IV. Список литературы.
ВведениеИзучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.
Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.
В моём реферате рассмотрены часто встречающиеся типы уравнений, неравенств и их систем, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов и при поступлении а ВУЗ.
§ 1. Основные определенияРассмотрим уравнение
¦ (a, b, c, …, k , x)=j (a, b, c, …, k , x), (1)
где a, b, c, …, k , x -переменные величины.
Любая система значений переменных
а = а0, b = b0, c = c0, …, k = k0, x = x0,
при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k , x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аÎ А, bÎ B, …, xÎ X. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.
Переменные a, b, c, …, k , которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.
Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k , l, m, n а неизвестные – буквами x, y,z.
Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.
Два уравнения, содержащие одни и те же параметры, называются равносильными, если:
а) они имеют смысл при одних и тех же значениях параметров;
б) каждое решение первого уравнения является решением второго и наоборот.
§ 2. Алгоритм решения. Находим область определения уравнения. Выражаем a как функцию от х. В системе координат хОа строим график функции а=¦ (х) для тех значений х, которые входят в область определения данного уравнения.Находим точки пересечения прямой а=с, где сÎ (-¥ ;+¥ ) с графиком функции а=¦ (х).Если прямая а=с пересекает график а=¦ (х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=¦ (х) относительно х.
Записываем ответ. § 3. ПримерыI. Решить уравнение
(1)
Решение.
Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а :
или
График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.
Если а Î
(-¥
;-1]È
(1;+¥
)È
, то прямая у=а пересекает график уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения
относительно х.
Таким образом, на этом промежутке уравнение (1) имеет решение .
Если а Î
, то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих точек можно найти из уравнений
и
, получаем
и
.
Если а Î
, то прямая у=а не пересекает график уравнения (1), следовательно решений нет.
Ответ:
Если а Î
(-¥
;-1]È
(1;+¥
)È
, то
;
Если а Î ,
то
,
;
Если а Î
, то решений нет.
II. Найти все значения параметра а, при которых уравнение имеет три различных корня.
Решение.
Переписав уравнение в виде и рассмотрев пару функций
, можно заметить, что искомые значения параметра а и только они будут соответствовать тем положениям графика функции
, при которых он имеет точно три точки пересечения с графиком функции
.
В системе координат хОу построим график функции ). Для этого можно представить её в виде
и, рассмотрев четыре возникающих случая, запишем эту функцию в виде
Поскольку график функции – это прямая, имеющая угол наклона к оси Ох, равный
, и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три указанные точки пересечения можно получить лишь в случае, когда эта прямая касается графика функции
. Поэтому находим производную
Ответ: .
III. Найти все значения параметра а, при каждом из которых система уравнений
имеет решения.
Решение.
Из первого уравнения системы получим при
Следовательно, это уравнение задаёт семейство “полупарабол” - правые ветви параболы
“скользят” вершинами по оси абсцисс.
Выделим в левой части второго уравнения полные квадраты и разложим её на множители
Множеством точек плоскости , удовлетворяющих второму уравнению, являются две прямые
и
Выясним, при каких значениях параметра а кривая из семейства “полупарабол” имеет хотя бы одну общую точку с одной из полученных прямых.
Если вершины полупарабол находятся правее точки А, но левее точки В (точка В соответствует вершине той “полупараболы”, которая касается
прямой ), то рассматриваемые графики не имеют общих точек. Если вершина “полупараболы” совпадает с точкой А, то
.
Случай касания “полупараболы” с прямой определим из условия существования единственного решения системы
В этом случае уравнение
имеет один корень, откуда находим :
Следовательно, исходная система не имеет решений при , а при
или
имеет хотя бы одно решение.
Ответ: а Î
(-¥
;-3] È
(;+¥
).
IV. Решить уравнение
Решение.
Использовав равенство , заданное уравнение перепишем в виде
Это уравнение равносильно системе
Уравнение перепишем в виде
. (*)
Последнее уравнение проще всего решить, используя геометрические соображения. Построим графики функций и
Из графика следует, что при
графики не пересекаются и, следовательно, уравнение не имеет решений.
Если , то при
графики функций совпадают и, следовательно, все значения
являются решениями уравнения (*).
При графики пересекаются в одной точке, абсцисса которой
. Таким образом, при