Xreferat.com » Рефераты по математике » Интеграл по комплексной переменной

Сколько стоит написать твою работу?

Работа уже оценивается. Ответ придет письмом на почту и смс на телефон.

?Для уточнения нюансов.
Мы не рассылаем рекламу и спам.
Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.
В таком случае, пожалуйста, повторите заявку.

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, пожалуйста, повторите заявку.
Хотите промокод на скидку 15%?
Успешно!
Отправить на другой номер
?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа".

Интеграл по комплексной переменной

Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.

Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.

Основные свойства : Пусть на комплексной плоскости  Z задана кусочно-гладкая кривая С длиной  l, используя  параметрическое задание кривой С зададим h(t) и x (t), где h и x являются кусочно-гладкими кривыми от действительной  переменной t. Пусть a t i.

Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i .  (1)
где z*– производная точки этой дуги.

Если при стремлении max |Dz i |® 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот  предел называется интегралом от функции f (z ) по кривой С.

Интеграл по комплексной переменной                            (2) 

f (zi* ) = u (Pi*) + iv (Pi*)      (3)

где Dz i = Dx (t) + iDh(t)     (x (t) и h(t) - действительные числа)

Подставив (3) в (1) получим :

Интеграл по комплексной переменной

           (4)

Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем :

Интеграл по комплексной переменной

                                                            (5)

Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (z ).

Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :

Интеграл по комплексной переменной

Интеграл по комплексной переменной

Интеграл по комплексной переменной

Интеграл по комплексной переменной


Интеграл по комплексной переменной
О ограниченности интеграла.

Интеграл по комплексной переменной

При этом z = j (z ).


   7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij,    0 £ j £ 2p,      dz = ir×eij dj .

Интеграл по комплексной переменной
Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.


ТЕОРЕМА КОШИ.

В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :

Интеграл по комплексной переменной
Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:

Интеграл по комплексной переменной

        ( 8 )

ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.

Доказательство : из формулы (5) следует:

Интеграл по комплексной переменной
Т.к. f(z ) аналитическая всюду, то  U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:

Интеграл по комплексной переменной
Аналогично :

По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :

Интеграл по комплексной переменной


ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(z) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.

TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :

Интеграл по комплексной переменнойПусть f (z) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (z) непрерывна в замкнутой области G, тогда :

Интеграл по комплексной переменной

, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.

Неопределенный интеграл.

Интеграл по комплексной переменной

Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:

 интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией  Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф¢ (Z) = f( Z).

Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

         

                  ( 9)

Это аналог формулы Ньютона-Лейбница.

Интеграл Коши. Вывод формулы Коши.

Интеграл по комплексной переменнойРанее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.

Интеграл по комплексной переменной

Интеграл по комплексной переменной

Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию j (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур g с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и g. Согласно теореме Коши имеем :


По свойствам интегралов :

          (2 )

Интеграл по комплексной переменнойТак как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве g окружность gr с радиусом r . Тогда:

           (3)

Уравнение окружности gr : z = Z0 + reij         (4)

Подставив (4) в (3) получим :

Интеграл по комплексной переменной

       ( 5 )

                                                                        

Интеграл по комплексной переменной

            ( 6 )

       

Интеграл по комплексной переменной

       (7)

Интеграл по комплексной переменнойУстремим  gr® 0, т.е. r® 0.

Тогда т.к. функция  f(z) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех e>0 существует r>0, что для всех z из r–окрестности точки Z0 выполняется | f(z) – f(Z0) | < e.>

Интеграл по комплексной переменной


Интеграл по комплексной переменной

               (8)

Подставив ( 7) в ( 6) с учетом ( 8) получаем :

Интеграл по комплексной переменной
Подставляя в ( 5)  и выражая f(Z0) имеем :


            (9)

Интеграл по комплексной переменнойЭто интеграл Коши.

Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(z) в некоторой точке Z0 через ее значение на произвольном контуре g , лежащем в области аналитичности функции f(z) и содержащем точку Z0 внутри.

Очевидно, что если бы функция f(z) была аналитична и в точках контура С, то в качестве границы g в формуле (9) можно было использовать контур С.

Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.

Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :

Интеграл по комплексной переменной
При Z0 Î Г указанный интеграл не существует.


Интегралы, зависящие от параметра.

Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования z и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.

Пусть задана функция двух комплексных переменных j (Z, z ), причем   Z= x + iy  в точке, принадлежащей некоторой комплексной плоскости G. z= x+ ih  Î  С.  (С - граница G).

Взаимное расположение области и кривой произвольно. Пусть функция j (Z, z )  удовлетворяет условиям : 1) Функция для всех значений z Î  С является аналитической в области G. 2) Функция j (Z, z )  и ее производная ¶j/¶Z являются непрерывными функциями по совокупности переменных Z и z при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :

Интеграл по комплексной переменной
Интеграл существует и является функцией комплексной переменной. Справедлива формула :


Интеграл по комплексной переменной                              (2)

Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.

ТЕОРЕМА.  Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :

Интеграл по комплексной переменной

 (3)

С помощью формулы (3) можно получить производную любого порядка от аналитической функции  f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.

ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему  G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.

Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует разложение этой функции в ряд Тейлора :

Интеграл по комплексной переменной

Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:

Интеграл по комплексной переменной               (2) – разложение в ряд Тейлора.

Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 |

Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией. Неаналитическая функция в ряд Тейлора не раскладывается.

Интеграл по комплексной переменной                      (3)

Интеграл по комплексной переменной        (4)

Интеграл по комплексной переменной           (5)

Причем | Z | < R,  R ®  ¥ .>

Формулы ЭЙЛЕРА.

Применим разложение (3) положив, что Z = ix  и   Z= - ix;

Интеграл по комплексной переменной

Интеграл по комплексной переменной

Интеграл по комплексной переменной                                                        (6)

Аналогично взяв Z = - ix  получим :

Интеграл по комплексной переменной                                                      (7)

Из (6) и (7) можно выразить т.н. формулы Эйлера :

Интеграл по комплексной переменной                 (8)

В общем случае :

Интеграл по комплексной переменной    (9)

Известно, что :

Интеграл по комплексной переменной      (10)

Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами:

Интеграл по комплексной переменной

Ряд ЛОРАНА.

Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.

ТЕОРЕМА 1.

Интеграл по комплексной переменной

Однозначная функция  f(Z) аналитическая в круге радиусом  |Z-Z0| < R раскладывается в сходящийся к ней степенной ряд по степеням Z-Z>0.

Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.

Возьмем в круге радиуса r точку Z, а на границе области точку z , тогда  f(z) будет аналитична внутри круга с радиусом r и на его границе. Выполняется условие для существования интеграла Коши :

Интеграл по комплексной переменной                                                                                        (13)

Интеграл по комплексной переменной