Xreferat.com » Рефераты по математике » Многочлены Лежандра, Чебышева и Лапласа

Сколько стоит написать твою работу?

Работа уже оценивается. Ответ придет письмом на почту и смс на телефон.

?Для уточнения нюансов.
Мы не рассылаем рекламу и спам.
Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.
В таком случае, пожалуйста, повторите заявку.

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, пожалуйста, повторите заявку.
Хотите промокод на скидку 15%?
Успешно!
Отправить на другой номер
?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа".

Многочлены Лежандра, Чебышева и Лапласа

Размещено на /

СОДЕРЖАНИЕ


Введение

Многочлены Лежандра

Многочлены Чебышева

Преобразование Лапласа

Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке

4.1 Постановка задачи

4.2.Обращение преобразования Лапласа с помощью смещенных многочленов Лежандра

4.3. Обращение преобразования Лапласа с помощью смещенных многочленов Чебышева первого рода.

Заключение

преобразование смещенный многочлен исчисление

ВВЕДЕНИЕ


Математический анализ – раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.

Начало математическому анализу положил в 1665 И.Ньютон и (около 1675) независимо от него Г.Лейбниц, хотя важную подготовительную работу провели И.Кеплер (1571–1630), Ф.Кавальери (1598–1647), П.Ферма (1601–1665), Дж.Валлис (1616–1703) и И.Барроу (1630–1677).

Операционное исчисление – раздел математики, занимающийся главным образом алгебраическими операциями, производимыми над символами операции (или преобразования).

Во многих задачах математического анализа рассматриваются ситуации, в которых каждая точка одного пространства ставится в соответствие некоторой точке другого (или того же) пространства. Пространства могут быть абстрактными, в которых «точки» в действительности являются функциями. Соответствие между двумя точками устанавливается с помощью преобразования или оператора. В задачу теории операторов входит подробное описание и классификация различных видов преобразований и их свойств, а также разработка символических методов, позволяющих минимизировать и упростить вычисления. Обычно теорию операторов применяют к пространствам, в которых допускается сложение или умножение точек, т.е. линейным пространствам, группам, кольцам, полям и т.д.

Операционное исчисление позволяет осуществить абстрактные постановки задач и обобщить такие разделы математического анализа, как теория дифференциальных и интегральных уравнений. Мощным стимулом для развития теории операторов стали современные проблемы квантовой теории. Наиболее полные результаты получены для дистрибутивных операторов в т.н. гильбертовом пространстве. Интерес к этой области во многом связан с представлением таких операторов интегральными преобразованиями.

В середине XIX века появился ряд сочинений, посвящённых так называемому символическому исчислению и применению его к решению некоторых типов линейных дифференциальных уравнений. Сущность символического исчисления состоит в том, что вводятся в рассмотрение и надлежащим образом интерпретируются функции оператора дифференцирования.


Многочлены Лежандра, Чебышева и Лапласа.


Среди сочинений по символическому исчислению следует отметить вышедшую в 1862 году в Киеве обстоятельную монографию русского математика М. Е. Ващенко-Захарченко «Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений». В ней поставлены и разрешены основные задачи того метода, который в дальнейшем получил название операционного.

В 1892 году появились работы английского учёного О. Хевисайда, посвящённые применению метода символического исчисления к решению задач по теории распространения электрических колебаний в проводах.


Многочлены Лежандра, Чебышева и Лапласа


В отличие от своих предшественников, Хевисайд определил обратный оператор однозначно, полагая и считая f(u) = 0 для u < 0. Труды Хевисайда положили начало систематическому применению символического, или операционного, исчисления к решению физических и технических задач.


Многочлены Лежандра, Чебышева и Лапласа


Однако широко развитое в трудах Хевисайда операционное исчисление не получило математического обоснования, и многие его результаты оставались недоказанными. Строгое обоснование было дано значительно позже, когда была установлена связь между функциональным преобразованием Лапласа и оператором дифференцирования


Многочлены Лежандра, Чебышева и Лапласа


если существует производная Многочлены Лежандра, Чебышева и Лапласа, для которой


Многочлены Лежандра, Чебышева и Лапласа


существует и f(0) = 0, то


Многочлены Лежандра, Чебышева и Лапласа.


Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований. Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач теории упругости, теплопроводности, электродинамики и других разделов математической физики. Использование интегральных преобразований позволяет свести дифференциальное, интегральное или интегро-дифференциальное уравнение к алгебраическому, а также, в случае дифференциального уравнения в частных производных, уменьшить размерность.

Интегральные преобразования задаются формулой


Многочлены Лежандра, Чебышева и Лапласа, (1)


где функции Многочлены Лежандра, Чебышева и Лапласа называются оригиналом и изображением соответственно, и являются элементами некоторого функционального пространства Многочлены Лежандра, Чебышева и Лапласа, при этом функция Многочлены Лежандра, Чебышева и Лапласа называется ядром интегрального преобразования.

Большинство интегральных преобразований являются обратимыми, то есть по известному изображению можно восстановить оригинал, зачастую также интегральным преобразованием:


Многочлены Лежандра, Чебышева и Лапласа (2)


Хотя свойства интегральных преобразований достаточно обширны, у них довольно много общего.

преобразование смещенный многочлен исчисление

1. Многочлены Лежандра


Многочлены Лежандра — многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке Многочлены Лежандра, Чебышева и Лапласапо мере Лебега. Многочлены Лежандра могут быть получены из многочленов Многочлены Лежандра, Чебышева и Лапласаортогонализацией Грама ― Шмидта.

Названы по имени французского математика Адриен Мари Лежандра.

Многочлены Лежандра определяются по формуле (называемой формулой Родрига)


Многочлены Лежандра, Чебышева и Лапласа (3)


часто записываемой в виде:


Многочлены Лежандра, Чебышева и Лапласа (4)


Многочлены Лежандра также определяются по следующим формулам:


Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа, если Многочлены Лежандра, Чебышева и Лапласа;

Многочлены Лежандра, Чебышева и Лапласа, если Многочлены Лежандра, Чебышева и Лапласа.


Они также могут быть вычислены по рекуррентной формуле:


Многочлены Лежандра, Чебышева и Лапласа


Первые многочлены Лежандра равны:

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа


Многочлены Чебышева


Многочлены Чебышева — две последовательности многочленов Tn(x) и Un(x), Многочлены Лежандра, Чебышева и Лапласаназванные в честь Пафнутия Львовича Чебышева.
Многочлены Чебышева играют важную роль в теории приближений, поскольку корни многочленов Чебышева первого рода используются в качестве узлов в интерполяции алгебраическими многочленами.

Многочлен Чебышева первого рода Tn(x) характеризуется как многочлен степени n со старшим коэффициентом 2n - 1, который меньше всего отклоняется от нуля на интервале [ − 1,1]. Впервые рассмотрены самим Чебышёвым.

Многочлены Чебышева первого рода Tn(x) могут быть определены с помощью рекуррентного соотношения:


Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа


Многочлены Чебышева первого рода Многочлены Лежандра, Чебышева и Лапласамогут быть также определены с помощью равенства:


Многочлены Лежандра, Чебышева и Лапласа


или, что почти эквивалентно,


Многочлены Лежандра, Чебышева и Лапласа


Несколько первых многочленов Чебышева первого рода


Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа

Многочлены Лежандра, Чебышева и Лапласа


Многочлены Чебышева обладают следующими свойствами:

Ортогональность по отношению к соответствующим скалярному произведению (с весом Многочлены Лежандра, Чебышева и Лапласадля многочленов первого рода и Многочлены Лежандра, Чебышева и Лапласадля многочленов второго рода).

Среди всех многочленов, значения которых на отрезке [ − 1,1] не превосходят по модулю 1, многочлен Чебышева имеет: наибольший старший коэффициент наибольшее значение в любой точке за пределами [ − 1,1] если Многочлены Лежандра, Чебышева и Лапласа, то Многочлены Лежандра, Чебышева и Лапласа, где tk — коэффициент многочлена Чебышева первого рода, ak — коэффициент любого из рассматриваемых полиномов.

Нули полиномов Чебышева являются оптимальными узлами в различных интерполяционных схемах. Например, в методе дискретных особенностей, который часто используется при исследовании интегральных уравнений в электродинамике и аэродинамике.


Преобразование Лапласа


Преобразование Лапласа — интегральное преобразование, связывающее функцию Многочлены Лежандра, Чебышева и Лапласакомплексного переменного (изображение) с функцией Многочлены Лежандра, Чебышева и Лапласадействительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.

Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.

Интеграл Лапласа имеет вид:


Многочлены Лежандра, Чебышева и Лапласа (5)


где интегрирование производится по некоторому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z), определенной на L, аналитическую функцию F(p) комплексного переменного p=s+it. Многие интегралы вида (5) были рассмотрены П. Лапласом.

В узком смысле под преобразованием Лапласа подразумевают одностороннее преобразование Лапласа


Многочлены Лежандра, Чебышева и Лапласа, (6)


называемое так в отличие от двустороннего преобразования Лапласа


Многочлены Лежандра, Чебышева и Лапласа (7)


Преобразование Лапласа – частный вид интегральных преобразований;. преобразования вида (6) или (7) тесно связаны с Фурье преобразованием. Двустороннее преобразование Лапласа (7) можно рассматривать как преобразование Фурье функции Многочлены Лежандра, Чебышева и Лапласа, одностороннее преобразование Лапласа (6) - как преобразование Фурье функции j(t) равной Многочлены Лежандра, Чебышева и Лапласа при 0 < t < ∞ и равной нулю при -∞ < t < 0.

Подынтегральная комплексная локально суммируемая функция f(t) называется функцией-оригиналом, или просто оригиналом; в приложениях часто удобно трактовать переменное t как время. Функция F(p)=L[f], (р) называется также преобразованием Лапласа оригинала f(t) или изображением по Лапласу. Интеграл (6) понимается, вообще говоря, как условно сходящийся на бесконечности.

Априори возможны три случая:

1) существует действительное число Многочлены Лежандра, Чебышева и Лапласа такое, что интеграл (6) сходится при Многочлены Лежандра, Чебышева и Лапласа, а при Многочлены Лежандра, Чебышева и Лапласа – расходится; это число σс называется абсциссой (условной) сходимости;

2) интеграл (6) сходится при всех р, в этом случае полагают Многочлены Лежандра, Чебышева и Лапласа;

3) интеграл (6) расходится при всех р, в этом случае полагают Многочлены Лежандра, Чебышева и Лапласа

Если Многочлены Лежандра, Чебышева и Лапласа, то интеграл (6) представляет однозначную аналитическую функцию F(p) в полуплоскости сходимости Многочлены Лежандра, Чебышева и Лапласа. Обычно ограничиваются рассмотрением абсолютно сходящихся интегралов (6). Точная нижняя грань тех s, для которых существует интеграл Многочлены Лежандра, Чебышева и Лапласа, называется абсциссой абсолютной сходимости Многочлены Лежандра, Чебышева и Лапласа Многочлены Лежандра, Чебышева и Лапласа

Если а – есть нижняя грань тех s, для которых Многочлены Лежандра, Чебышева и Лапласа число а иногда называют показателем роста оригинала f(t).

При некоторых дополнительных условиях оригинал f(t) однозначно восстанавливается по своему F(p). Например, если f(t) имеет ограниченную вариацию в окрестности точки t0 или если f(t) кусочногладкая, то имеет место формула обращения преобразования Лапласа:


Многочлены Лежандра, Чебышева и Лапласа (8)


Формулы (6) и (8) позволяют получить ряд соотношений между операциями, производимыми над оригиналами и изображениями, а также таблицу изображений для часто встречающихся оригиналов. Все это составляет элементарную часть операционного исчисления.

В математической физике важные применения находит многомерное преобразование Лапласа:


Многочлены Лежандра, Чебышева и Лапласа (9)


где t = (t1, ……, tn)

-точка re-мерного евклидова пространства


Rn, p = (p1, ……, pn) = σ + iτ = (σ1, ……, σn) + (τ1, ……, τn)


-точка комплексного пространства


Cn, n≥1, (p,t) = (σ,t)+i(τ,t) = p1t1 + … +pntn


-скалярное произведение, dt = dt1…dtn - элемент объема в Rn. Комплексная функция f(t) в (9) определена и локально суммируема в области интегрирования


Многочлены Лежандра, Чебышева и Лапласа


-положительном координатном угле пространства Rn. Если функция f(t) ограничена в C*, то интеграл (9) существует во всех точках Многочлены Лежандра, Чебышева и Лапласа удовлетворяющих условию Re(p,t)>0, Многочлены Лежандра, Чебышева и Лапласа, которое определяет снова положительный координатный угол


Многочлены Лежандра, Чебышева и Лапласа


Интеграл (9) определяет голоморфную функцию комплексных переменных p = (p1 ,- pn) в трубчатой областиМногочлены Лежандра, Чебышева и Лапласа пространства Многочлены Лежандра, Чебышева и Лапласас основанием S. В более общем случае в качестве области интегрированияМногочлены Лежандра, Чебышева и Лапласа в (9) и основания Sтрубчатой области можно взять любую пару сопряженных замкнутых выпуклых острых конусов в пространстве Многочлены Лежандра, Чебышева и Лапласас вершиной в начале координат. При n=1 формула (9) переходит в (6), причем Многочлены Лежандра, Чебышева и Лапласа - положительная полуось и Многочлены Лежандра, Чебышева и Лапласа - правая полуплоскость. Преобразование Лапласа (9) определено и голоморфно и для функций f(t) гораздо более широких классов. Элементарные свойства преобразования Лапласа с соответствующими изменениями остаются справедливыми и для многомерного случая.

Численное преобразование Лапласа - численное выполнение преобразования (6), переводящего оригинал f(t), 0<t<∞ в изображение F(p),Многочлены Лежандра, Чебышева и Лапласа, а также численное обращение преобразования Лапласа, т. е. численное нахождение f(t) из интегрального уравнения (6) либо по формуле обращения (8).

Необходимость применения численного преобразования Лапласа возникает вследствие того, что таблицы оригиналов и изображений охватывают далеко не все встречающиеся в практике случаи, а также вследствие того, что оригинал или изображение зачастую выражаются слишком сложными, неудобными для применений формулами.

Проблема обращения преобразования Лапласа, как задача отыскания решения f(x) интегрального уравнения первого рода (6), относится к классу некорректных задач и может быть решена, в частности, посредством регуляризирующего алгоритма.

Задачу численного обращения преобразования Лапласа можно также решать методами, основанными на разложении функции-оригинала в функциональный ряд. Сюда в первую очередь можно отнести разложение в степенной ряд, в обобщенный степенной ряд, в ряд по показательным функциям, а также в ряды по ортогональным функциям, в частности по многочленам Чебышева, Лежандра, Якоби и Лагерра. Задача разложения оригинала в ряды по многочленам Чебышева, Лежандра, Якоби в окончательном своем виде сводится к проблеме моментов на конечном промежутке. Пусть известно преобразование Лапласа F(p) функции β(t)f(t):


Многочлены Лежандра, Чебышева и Лапласа


где f(t) - искомая функция, а β(t) - неотрицательная, интегрируемая на [0,∞) функция. Предполагается, что функция f(t) интегрируема на любом конечном отрезке [0, Т] и принадлежит классу L2(β(t), 0, ∞).По изображению F(р).функции β(t), f(t), функция f(t) строится в виде ряда по смещенным многочленам Якоби, в частности по смещенным многочленам Лежандра, Чебышева первого и второго рода, коэффициенты которого ak вычисляются по формуле.

Многочлены Лежандра, Чебышева и Лапласа


где Многочлены Лежандра, Чебышева и Лапласа- коэффициенты смещенного многочлена Лежандра, Чебышева первого и второго рода соответственно, записанных в виде Многочлены Лежандра, Чебышева и Лапласа

Другим приемом численного обращения преобразования Лапласа является построение квадратурных формул для интеграла обращения (8).


4. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке


Постановка задачи


Задачу преобразования Лапласа можно решать методами, основанными на разложении оригинала в ряды по ортогональным функциям, в частности по многочленам Чебышева, Лежандра и Якоби.Эта задача, которая в окончательном своем виде сводится к проблеме моментов на конечном промежутке, была подвергнута изучению в работах многих авторов.

Рассмотрим постановку этой задачи в таком виде, как это сделано в работах В.М. Амербаева и в книге В.А. Диткина и А.П. Прудникова [2].

Пусть известно преобразование Лапласа F(p) функции β(t)f(t):


Многочлены Лежандра, Чебышева и Лапласа (10)


Где f(t) – искомая функция, а β(t) – неотрицательная, абсолютно интегрируемая на [0,∞) функция. Предположим, что функция f(t) интегрируема на любом конечном отрезке [0, Т] и принадлежит классу L2(β(t), 0, ∞):


Многочлены Лежандра, Чебышева и Лапласа (11)


Требуется по изображению F(р) функции β(t)f(t), построить функцию f(t).

В интеграле (10) введем замену переменной x=e-t; тогда он приведется к виду


Многочлены Лежандра, Чебышева и Лапласа (12)


где


Многочлены Лежандра, Чебышева и Лапласа


В силу условий, которые наложены на функции f(t) и β(t), интеграл (12) сходится всюду в плоскости Re p≥,0, поэтому переменной р можно придать значения 0, 1, 2, … и получить «взвешенные моменты» функции Многочлены Лежандра, Чебышева и Лапласа


Многочлены Лежандра, Чебышева и Лапласа (13)


После этого решаемую задачу можно сформулировать так: найти функцию Многочлены Лежандра, Чебышева и Лапласа по ее «взвешенным моментам» Многочлены Лежандра, Чебышева и Лапласа, или, что тоже самое, найти функцию f(t) по значениям изображения функции β(t)f(t) в целочисленных точках p = k (k = 0, 1, 2, …). В частном случае эту задачу можно упростить и по первым п + 1 «взвешенным моментам» искать многочлен Многочлены Лежандра, Чебышева и Лапласа, такой, чтобы его «взвешенные моменты» совпадали с заданными моментами функции Многочлены Лежандра, Чебышева и Лапласа, то есть чтобы выполнялись равенства


Многочлены Лежандра, Чебышева и Лапласа (14)


4.2.Обращение преобразования Лапласа с помощью смещенных многочленов Лежандра


Рассмотрим частный случай весовой функции


Многочлены Лежандра, Чебышева и Лапласа (15)

Многочлены Лежандра, Чебышева и Лапласа или Многочлены Лежандра, Чебышева и Лапласа.Многочлены Лежандра, Чебышева и Лапласа


Многочленами, ортогональными на отрезке [0,1] с весом Многочлены
					</div>
				<!--noindex--><div class=