Xreferat.com » Рефераты по математике » Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

Сколько стоит написать твою работу?

Работа уже оценивается. Ответ придет письмом на почту и смс на телефон.

?Для уточнения нюансов.
Мы не рассылаем рекламу и спам.
Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.
В таком случае, пожалуйста, повторите заявку.

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, пожалуйста, повторите заявку.
Хотите промокод на скидку 15%?
Успешно!
Отправить на другой номер
?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа".

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

М.И. Векслер, Г.Г. Зегря

Уравнения Максвелла для электростатики имеют вид:

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

= ρ

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

=

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат


При этом

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(4)

В вакууме ε = 1, так что

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(5)

Потенциал φ считается равным нулю на бесконечности, если не оговорено иное.

Векторные операторы (grad, div, rot), фигурирующие в уравнениях Максвелла, по-разному записываются в различных системах координат:

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

=

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(6)


Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(7)


Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(8)

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

=

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(9)


Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(10)


Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(11)

Δ φ =

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(12)


Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(13)


Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(14)

Для цилиндрической и сферической систем выписана лишь радиальная часть соответствующих операторов. Этого достаточно для решения задач, в которых электрические величины зависят только от r.

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

=

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

(15)

Задача. Электрическое поле зависит только от координаты x согласно формуле Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат. Требуется вычислить распределение заряда ρ(x) и распределение потенциала φ(x). При нахождении φ(x) принять φ|x = 0 = 0.

Решение: Распределение заряда находится непосредственно из уравнения Максвелла:

ρ =

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат


ρ =

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат


Для нахождения потенциала φ(x) необходимо интегрирование уравнения (4), причем с обоснованно взятыми пределами, а именно от точки x = x*, в которой φ(x*) = 0 до точки x, в которой ищется потенциал:

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат




В условии сказано, что φ(0) = 0 - это и диктует выбор нижнего предела:

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат




В качестве переменной интегрирования мы используем Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат, чтобы избежать путаницы с x. Теперь мы проводим вычисление и приходим к окончательному ответу:

φ(x) =

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат



=

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат


Задача. В некоторой области распределение потенциала является цилиндрически-симметричным и подчиняется закону φ = α r5, где r - расстояние от оси. Найти Er(r) и ρ(r) для этой области.

Ответ: Er(r) = –5α r4, ρ(r) = –25ε0α r3

Задача. Потенциал внутри шара зависит от координаты r как φ(r) = ar2+b (a, b - константы). Найти ρ(r).

Решение Мы имеем дело со сферической системой и должны работать в ней. Ввиду симметрии, электрическое поле направлено от центра шара (или, вообще говоря, к нему - это зависит от знака a). Поле находим как градиент потенциала:

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат




После этого сразу записывается Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат(у нас ε = 1):

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат




Далее используем уравнение Максвелла для нахождения заряда:

Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат





Задача. В цилиндрической системе имеется электрическое поле Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат, α>0. Выяснить, какому распределению заряда ρ(r) и какому потенциалу φ(r) такое поле соответствует.

Ответ: ρ(r) = Aε0exp(–α r)(2–α r), Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат

Задача. Проверить, выполняется ли критерий потенциальности (Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат) для поля Уравнения Максвелла для электростатики. Векторные операторы в различных системах координати для поля Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат.

Ответ: Для первого поля - да, для второго - нет.

Список литературы

1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.

2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.

3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.