Xreferat.com » Рефераты по математике » Эрмитовы операторы

Эрмитовы операторы

Содержание


Линейные операторы

Линейные уравнения

Эрмитовы операторы


Линейные операторы


Пусть M и N — линейные множества. Оператор L, преобразующий элементы множества M в элементы множества N, называется линейным, если для любых элементов f и g из M и комплексных чисел λ и μ справедливо равенство


L(λ+ μg) = λLf + μLg (1)


При этом множество M = ML называется областью определения оператора L. Если Lf = f при всех f Є M, то оператор L называется тождественным (единичным) оператором. Единичный оператор будем обозначать через I.


Линейные уравнения


Пусть L — линейный оператор с областью определения ML . Уравнение


Lu = F (2)


называется линейным неоднородным уравнением. В уравнении (2) заданный элемент F называется свободным членом (или правой частью), а неизвестный элемент и из ML — решением этого уравнения.

Если в уравнении (2) свободный член F положить равным нулю, то полученное уравнение


Lu = 0 (3)


называется линейным однородным уравнением, соответствующим уравнению (2).

В силу линейности оператора L совокупность решений однородного уравнения (3) образует линейное множество; в частности, и = 0 всегда является решением этого уравнения.

Всякое решение и линейного неоднородного уравнения (2) (если оно существует) представляется в виде суммы частного решения ио этого уравнения и общего решения ŭ, соответствующего линейного однородного уравнения (3)


и = ио + ŭ.


Отсюда непосредственно выводим: для того чтобы решение уравнения (2) было единственным в ML, необходимо и достаточно, чтобы соответствующее однородное уравнение (3) имело только нулевое решение в ML . Пусть однородное уравнение (3) имеет только нулевое решение в ML. Обозначим через Rl область значений оператора L, т.е. (линейное) множество элементов вида {Lf}, где f пробегает ML. Тогда для любого F Є Rl уравнение (2) имеет единственное решение и Є ML , и, таким образом, возникает некоторый оператор, сопоставляющий каждому элементу F из Rl соответствующее решение уравнения (2). Этот оператор называется обратным оператором к оператору L и обозначается через L-1, так что


и = L-1F. (4)


Оператор L-1, очевидно, является линейным и отображает Rl на ML. Непосредственно из определения оператора L-1, а также из соотношений (2) и (4) вытекает:


L L-1F = F, F Є Rl ; L-1Lu = u, и Є ML,

т.е. L L-1=I, L-1L = I.

Если линейный оператор L имеет обратный L-1, то системы функций {φk} и {Lφk} одновременно линейно независимы. (При этом, естественно, предполагается, что все φk принадлежат ML.)

Рассмотрим линейное однородное уравнение


Lu = λu, (5)


где λ — комплексный параметр. Это уравнение имеет нулевое решение при всех λ. Может случиться, что при некоторых λ оно имеет ненулевые решения из ML. Те комплексные значения λ, при которых уравнение (5) имеет ненулевые решения из ML, называются собственными значениями оператора L, а соответствующие решения — собственными элементами (функциями), соответствующими этому собственному значению. Полное число r, 1 r ≤ , линейно независимых собственных элементов, соответствующих данному собственному значению λ, называется кратностью этого собственного значения; если кратность r = 1, то λ называется простым собственным значением.

Если кратность r собственного значения λ оператора L конечна и u1,...,и2 — соответствующие линейно независимые собственные элементы, то любая их линейная комбинация


u0 = c1u1 + c2u2 + ... + crur


также является собственным элементом, соответствующим этому собственному значению, и приведенная формула дает общее решение уравнения (5). Отсюда вытекает: если решение уравнения


Lu = λ u + f (6)


существует, то его общее решение представляется формулой


и = и* +∑сkиk, (7)


где и* — частное решение (6) и сk, k = l,2,...,r, — произвольные постоянные.


Эрмитовы операторы


Линейный оператор L, переводящий MLСL2(G) в L2(G), называется эрмитовым, если его область определения ML плотна в L2(G) и для любых f и g из Ml справедливо равенство


(Lf,g) = (f,Lg ).


Выражения (Lf, g) и (Lf, f) называются соответственно билинейной и квадратичной формами, порожденными оператором L.

Для того чтобы линейный оператор L был эрмитовым, необходимо и достаточно, чтобы порожденная им квадратичная форма (Lf, f), f Є Ml, где Ml плотна в L2(G), принимала только вещественные значения.

Линейный оператор L, переводящий Ml С L2(G) в L2(G), называется положительным, если Ml плотна в L2(G) и


(Lf, f) 0, f Є Ml .


В частности, всякий положительный оператор эрмитов.

Теорема. Если оператор L эрмитов (положительный), то все его собственные значения вещественны (неотрицательны), а собственные функции, соответствующие различным собственным значениям, ортогональны.

Доказательство. Пусть λ0 — собственное значение, u0 — соответствующая нормированная собственная функция эрмитова оператора L, L u0 = λ0u0. Умножая скалярно это равенство на u0, получим


(Lu0, u0) = (λ0 u0, u0) = λ0 (u0, u0) λ0|| u0||2 = λ0. (8)


Но для эрмитова (положительного) оператора квадратичная форма (Lf, f) принимает только вещественные (неотрицательные) значения, и, стало быть, в силу (7) λ0 — вещественное (неотрицательное) число.

Докажем, что любые собственные функции и1 и и2, соответствующие различным собственным значениям λ1 и λ2, ортогональны. Действительно, из соотношений


Lu1 = λ1 и1, Lu2 = λ2и2,


из вещественности λ1 и λ2 и из эрмитовости оператора L получаем цепочку равенств


λ1(и1,и2) = (λ и1,и2) = (Lи1,и2) = (и1,Lu2) = (и1,λ2и2) = =λ2(и1,и2),


т.е. λ1(и1,и2) = λ2(и1,и2). Отсюда, поскольку λ1 ≠ λ2, вытекает, что скалярное произведение (и1,и2) равно нулю. Теорема доказана.

Предположим, что множество собственных значений эрмитова оператора L не более чем счетно, а каждое собственное значение конечной кратности. Перенумеруем все его собственные значения: λ1,λ2,..., повтори λk столько раз, какова его кратность. Соответствующие собственные функции обозначим через и1,и2,… так, чтобы каждому собственному значению соответствовала только одна собственная функция иk:


Luk = λk , иk, k = 1,2,...


Собственные функции, соответствующие одному и тому же собственному значению, можно выбрать ортонормальными, используя процесс ортогонализации Шмидта. Всякая ортонормальная система {φk} состоит из линейно независимых функций. Всякая система ψ1,ψ2,... линейно независимых функций из L2(G) преобразуется в ортонормальную систему φ1,φ2, — следующим процессом ортогонализации Шмидта:


φ1 = ψ1 /||ψ2 || , φ2 = ψ2 – (ψ2, φ1) φ1 / || ψ2 – (ψ2, φ1) φ1 ||

φk = ψk – (ψk, φk-1)φk-1 – … – (ψk,φ1)φ1 / || ψk – (ψk, φk-1)φk-1 – … – – (ψk,φ1)φ1||


При этом опять получаются собственные функции, соответствующие тому же самому собственному значению. По доказанной теореме собственные функции, соответствующие различным собственным значениям, ортогональны.

Таким образом, если система собственных функций {ик} эрмитова оператора L не более чем счетна, то ее можно выбрать ортонормальной:


(Luk,ui ) = λk(иk,ui) = λkδki


Список литературы


1. Владимиров B.C., Жаринов В. В. Уравнения математической физики: Учебник для вузов. — М.: Физмат-лит, 2000.

2. Владимиров В. С. Уравнения математической физики. — Изд. 5-е. — М.: Наука, 1985.

3. Никольский СМ. Математический анализ.—Изд. 5-е. — М.: Физмат-лит, 2000.

Похожие рефераты: