Xreferat.com » Рефераты по математике » Геометрия Лобачевского

Геометрия Лобачевского

Тема: «»


Выполнила: Зайнулина Г.


Г.Бишкек 2010

Н.И. Лобачевский и его геометрия


До начала XIX столетия ни одна из попыток доказательства V постулата не увенчалась успехом. Таким образом, проблема V постулата оставалась неразрешимой. И только в начале XIX в. были получены результаты, которые привели к решению этой проблемы. Основная заслуга в этом принадлежит знаменитому русскому ученому Н.И. Лобачевскому. Николай Иванович Лобачевский родился 2 декабря 1792 г. в Нижнем Новгороде (ныне г. Горький). Он окончил гимназию при Казанском университете, а затем и Казанский университет, после чего был оставлен там преподавателем. С 1816 г. Н.И. Лобачевский — профессор того же университета, с 1827 по 1846 г. — ректор университета. С 1846 по 1855 г.— помощник попечителя Казанского учебного округа. Н.И. Лобачевский скончался 24 февраля 1856 г. В течение первых лет преподавательской деятельности в Казанском университете Н.И. Лобачевский настойчиво пытался доказать V постулат. Неудачи этих попыток и попыток его предшественников привели его к выводу, что V постулат не может быть выведен из остальных постулатов геометрии. Чтобы это доказать, Н.И. Лобачевский построил логическую систему, в которой, сохраняя основные посылки Евклида, он отвергает V постулат и заменяет его противоположным допущением. Он пришел к выводу, что эта логическая схема представляет собой новую геометрию, которая может быть развита так же успешно, как и геометрия Евклида. 7 февраля (по старому стилю) 1826 г. Н. И. Лобачевский представил физико-математическому факультету Казанского университета доклад по теории параллельных под названием «Рассуждения о принципах геометрии». В 1829 г. в «Ученых записках Казанского университета» он поместил статью «О началах геометрии». Это была первая опубликованная работа по новой геометрии. В последующие годы Лобачевский издал еще ряд сочинений по геометрии. В этих сочинениях он первым отчетливо сформулировал и обосновал утверждение о том, что V постулат Евклида нельзя вывести из остальных аксиом геометрии. Лобачевский развивает свою геометрию на плоскости и в пространстве до тех же пределов, до каких была развита Евклидова геометрия, включая и формулы тригонометрии. Эту новую геометрию он назвал «воображаемой» (впоследствии ее стали называть геометрией Лобачевского или гиперболической геометрией). Открывая все новые и новые факты, Лобачевский не встретил в своей геометрии каких-либо логических противоречий. Исследования, проделанные им, привели к убеждению, что его логическая схема свободна от логических противоречий. Желая показать, что его геометрия никогда не приведет к противоречию, Лобачевский дает ее аналитическое исследование и решает проблему непротиворечивости своей геометрии вполне удовлетворительно для того времени. Лобачевский показал, что его геометрия может быть с пользой приложена в математическом анализе: он вычислил много интегралов, которые до него не поддавались вычислению. Примерно в одно время с Н.И. Лобачевским теорией параллельных прямых занимались великий немецкий математик Гаусс (1777—1855) и выдающийся венгерский математик Я. Бояи (1802— 1860). Но Гаусс не опубликовал ничего по теории параллельных, боясь, что его не поймут. После смерти Гаусса в его бумагах были найдены наброски отдельных наиболее простых теорем гиперболической геометрии. Я. Бояи опубликовал в 1832 г. (через три года после публикации Лобачевского и, не зная о последней) на латинском языке произведение «Приложение, излагающее абсолютно верное учение о пространстве, независимое от правильности или ложности XI аксиомы Евклида...». В этой работе, составившей приложение к математическому трактату его отца Фаркаша Бояи, Янош Бояи изложил ту же теорию, что и Лобачевский, но в значительно менее развитой форме. Результаты Лобачевского оказались настолько необычными для математиков, воспитанных на идеях геометрии Евклида, что не были поняты большинством из его современников (и даже академиком М.В. Остроградским — одним из крупнейших математиков XIX в.). Лишь после смерти Гаусса, когда была опубликована переписка Гаусса с некоторыми его друзьями-математиками, в которой содержались восторженные отзывы об исследованиях Лобачевского и Бояи, внимание математиков всего мира было привлечено к геометрии Лобачевского; появились многочисленные исследования, связанные с ней. Особое впечатление произвела работа Бельтрами «Опыт интерпретации неевклидовой геометрии», опубликованная в 1868 г. В ней были указаны поверхности, на которых в малом осуществляется двумерная геометрия Лобачевского. Наконец, в 1871 г. знаменитый немецкий математик Ф. Клейн (1849—1925) в работе «О так называемой неевклидовой геометрии» доказал непротиворечивость геометрии Лобачевского, чем устранил последние сомнения в ее правомерности. Исследования Лобачевского получили широкое признание после его смерти. Оказалось, что работы Лобачевского по геометрии представляют собой новый этап в развитии естествознания (недаром английский математик XIX в. Клиффорд называл Лобачевского Коперником геометрии). До Лобачевского евклидову геометрию считали единственно возможным учением о пространстве. Работы Лобачевского опровергли такой взгляд, привели к широким обобщениям в геометрии и их важнейшим приложениям в различных разделах математики, механики, физики и астрономии. Выше было отмечено, что с научной точки зрения систему аксиом и постулатов Евклида нельзя признать вполне удовлетворительной, так как у Евклида при изложении геометрии приходится в ряде случаев использовать утверждения, которые явно не высказаны и не доказаны. В конце 60-х годов прошлого столетия перед математиками возникла задача построить такую систему аксиом элементарной геометрии, на базе которой, опираясь лишь на законы логики, без ссылок на наглядность и очевидность можно было бы изложить всю геометрию. Эта задача стала особенно актуальной после того, как идеи Лобачевского получили всеобщее признание и появились работы Б. Римана по эллиптической геометрии. В конце XIX и в начале XX в. появились многочисленные работы по обоснованию геометрии ряда таких крупнейших математиков, как Паш, Пеано, Пиери, Гильберт, Вейль и др. Наиболее исчерпывающими явились работы Гильберта и Вейля. Эти исследования оказали большое влияние на формирование аксиоматического метода, который применяется во всех разделах современной математики. Книга Гильберта «Основания геометрии», вышедшая в 1899 г., сыграла существенную роль в этой серии исследований. Она в 1903 г. была удостоена Международной премии имени Н.И. Лобачевского. В ней впервые дан список аксиом, достаточный для логического построения евклидовой геометрии. Можно сказать, что с «Оснований геометрии» Гильберта начинается современный аксиоматический метод в математике. В следующих двух параграфах рассмотрим краткий обзор системы аксиом Гильберта.


Система аксиом Гильберта (обзор)


По Гильберту, предполагается, что даны три различных множества. Элементы первого множества называются точками, элементы второго множества — прямыми, а элементы третьего множества — плоскостями (основные объекты). Точки, прямые и плоскости обозначаются соответственно буквами А, В, С, ...; а, b, с, ...; α, β, γ, …. Элементы этих множеств находятся в определенных отношениях, которые называются: «принадлежность», «лежать между» и «конгруэнтность» (основные отношения). Природа основных понятий, т. е. основных объектов и основных отношений, может быть какой угодно, но они должны удовлетворять определенным аксиомам, которые перечислены ниже.

Список Гильберта содержит 20 аксиом, которые разделяются на пять групп.

Группа I. Аксиомы принадлежности.

Аксиомы этой группы определяют свойства взаимного расположения точек, прямых и плоскостей, выражаемые словом «принадлежит» (или «лежит на», «проходит через»). Группа I содержит следующие восемь аксиом.

I1. Каковы бы ни были две точки А, В, существует прямая а, проходящая через эти точки.

I2. Каковы бы ни были две точки А и В, существует не более одной прямой, проходящей через эти точки.

I3. На каждой прямой лежат по крайней мере две точки. Существуют по крайней мере три точки, не лежащие на одной прямой.

I4. Каковы бы ни были три точки А, В, С, не лежащие на одной прямой, существует плоскость α, проходящая через эти точки. На каждой плоскости лежит хотя бы одна точка.

I5. Каковы бы ни были три точки, не лежащие на одной прямой, существует не более одной плоскости, проходящей через эти точки.

I6. Если две точки А и В прямой а лежат в плоскости α, то каждая точка прямой а лежит в плоскости α.

В этом случае говорят, что прямая а лежит в плоскости α или плоскость α проходит через прямую а.

I7. Если две плоскости α и β имеют общую точку А, то они имеют по крайней мере еще одну общую точку В.

I8. Существуют по крайней мере четыре точки, не лежащие в одной плоскости.

Исходя из этих аксиом, можно доказать ряд теорем, большинство из которых в школьном курсе геометрии не доказываются, так как они наглядно очевидны. Перечислим некоторые из этих теорем.

1. Две прямые имеют не более одной общей точки.

2. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих двух плоскостей.

3. Через прямую и не лежащую на ней точку, так же как через две пересекающиеся прямые, проходит одна и только одна плоскость.

4. На каждой плоскости существуют три точки, не лежащие на одной прямой.

Группа II. Аксиомы порядка.

Предполагается, что точка на прямой может находиться в известном отношении к двум другим точкам той же прямой; это отношение выражается словами «лежать между». Если точка В лежит между точкой А и точкой С, то мы запишем так: А — В — С. При этом должны быть удовлетворены следующие четыре аксиомы.

II1. Если А — В — С, то А, В, С — различные точки одной прямой и С — В — А.

II2.Каковы бы ни были две точки А и В, существует по крайней мере одна точка С на прямой АВ, такая, что А — В — С.

IIз. Среди любых трех точек прямой существует не более одной точки, лежащей между двумя другими.

По Гильберту, отрезком АВ (или ВА) называется пара точек A и B. Точки А и В называются концами отрезка, а любая точка, лежащая между ними,— внутренней точкой отрезка или просто точкой отрезка.

II4 (аксиома Паша). Пусть А, В, С — три точки, не лежащие на одной прямой, а а — прямая в плоскости ABC, не проходящая ни через одну из точек А, В, С. Тогда если прямая а проходит через точку отрезка АВ, то она проходит также через точку отрезка АС или ВС.

Можно доказать, что утверждение, сформулированное в аксиоме Паша, верно и в том случае, когда точки А, В и С лежат на одной прямой. Нетрудно также доказать, что если прямая а пересекает какие-либо два из трех отрезков АВ, ВС и АС, то она не пересекает третий из этих отрезков.

С помощью аксиом групп I и II доказываются многие факты геометрии и вводится ряд основных определений. Прежде всего можно доказать, что между любыми точками существует по крайней мере одна точка, а отсюда легко прийти к выводу, что любой отрезок (а следовательно, и любая прямая) содержит бесконечное множество точек. Заметим, однако, что с помощью аксиом I и II групп нельзя доказать, что это множество несчетное. В дополнение к аксиоме IIз можно доказать, что из трех точек прямой всегда одна точка лежит между двумя другими.

Аксиомы групп I и II позволяют ввести такие важные понятия геометрии, как понятия полуплоскости, луча и полупространства. В качестве примера введем понятие полуплоскости. Предварительно докажем следующую теорему о полуплоскости.

Теорема. Прямая а, лежащая в плоскости α, разделяет множество точек, этой плоскости, не лежащих на прямой а, на два непустых подмножества так, что если точки А и В принадлежат одному подмножеству, то отрезок АВ не имеет общих точек с прямой а; если же эти точки принадлежат разным подмножествам, то отрезок АВ имеет общую точку с прямой а.

доказательство

Каждое из подмножеств точек, определяемых предыдущей теоремой, называется полуплоскостью плоскости α с границей а.

Группа III. Аксиомы конгруэнтности.

Предполагается, что отрезок (угол) находится в известном отношении к какому-то отрезку (углу). Это отношение выражается словом «конгруэнтен» и обозначается символом «». Должны быть удовлетворены следующие пять аксиом.

III1. Если даны отрезок АВ и луч, исходящий из точки А', то существует точка В', принадлежащая данному лучу, такая, что АВ А'В'.

Можно доказать, что точка В' на данном луче единственная.


III2. Если А'В' АВ и А"В" АВ, то А'В' А"В".

IIIз. Пусть А - В - С, А' - В' - С', АВ А'В' и ВС В'С'. Тогда АС А'С'.


III4. Пусть даны hk и флаг (О', h', λ'). Тогда в полуплоскости λ’ существует один и только один луч k', исходящий из точки О', такой, что hk h'k'.

Каждый угол конгруэнтен самому себе.

III5. Пусть А, В, С — три точки, не лежащие на одной прямой, и А', В', С' — тоже три точки, не лежащие на одной прямой. Если при этом


АВ А'В', АС А'С'. BAC В'А'С', то АВС А'В'С'.


Укажем некоторые теоремы, которые следуют из аксиом конгруэнтности.

1. Отношение конгруэнтности отрезков является отношением эквивалентности на множестве отрезков.

2. В равнобедренном треугольнике углы при основании равны.

По Гильберту, треугольник ABC называется конгруэнтным треугольнику


А'В'С' (∆АВС ∆А'В'С’), если АВ А'В', ВС В'С', СА С'А', АА АА', АВ АВ', АС АС'.


3. Первый, второй и третий признаки равенства треугольников.

4. Отношение конгруэнтности углов является отношением эквивалентности на множестве углов.

5. Внешний угол треугольника больше каждого угла треугольника, несмежного с ним.

6. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона."

7. Любой отрезок имеет одну и только одну середину.

8. Любой угол имеет одну и только одну биссектрису.

Группа IV. Аксиомы непрерывности.

IV1 (аксиома Архимеда). Пусть АВ и CD — какие-нибудь отрезки. Тогда на прямой АВ существует конечное множество точек А1, А2, ..., Аn, таких, что выполняются условия: а) А — А1 — A2,, A1 — А2 — Аз, ..., An - 2 — An - 1 — An; б) АА1 A1A2 ... Аn – 1An CD; в) А — В — An.

IV2 (аксиома Кантора). Пусть на произвольной прямой а дана бесконечная последовательность отрезков А1В1, A2B2, …, из которых каждый последующий лежит внутри предыдущего и, кроме того, для любого отрезка CD найдется натуральное число п, такое, что АnВn < CD. Тогда на прямой а существует точка М, принадлежащая каждому из отрезков данной последовательности.

Группа V. Аксиома параллельности.

Пусть а — произвольная прямая, а А — точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не более одной прямой, проходящей через A и не пересекающей а.

В §3 мы доказали, что эта аксиома эквивалентна V постулату Евклида.


Аксиома Лобачевского. Параллельные прямые по Лобачевскому


Геометрия Лобачевского (или гиперболическая геометрия) основана на аксиомах групп I—IV абсолютной геометрии и на следующей аксиоме Лобачевского.

V*. Пусть а — произвольная прямая, а А — точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не менее двух прямых, проходящих через точку А и не пересекающих прямую а.




Ясно, что все определения и теоремы абсолютной геометрии имеют место и в геометрии Лобачевского. Из аксиомы V* непосредственно следует, что если даны произвольная прямая а и точка А, не лежащая на ней, то существует бесконечное множество прямых, проходящих через точку А и не пересекающих прямую а. В самом деле, по аксиоме V* существуют две прямые, которые обозначим через b и с, проходящие через точку А и не пересекающие прямую а (рис. 2-1). Прямые b и с образуют две пары вертикальных углов, которые на рисунке 2-1 обозначены цифрами 1, 2 и 3, 4. Прямая а не пересекает прямые b и с, поэтому все ее точки принадлежат внутренней области одного из четырех углов 1, 2, 3, 4, например внутренней области угла 1. Тогда, очевидно, любая прямая, проходящая через точку А и лежащая внутри вертикальных углов 3 и 4, не пересекает прямую а (например, прямые l и d на рис. 2-1).

В отличие от определения параллельных прямых по Евклиду в геометрии Лобачевского параллельными к данной прямой называются (только некоторые прямые из тех, которые не пересекают данную прямую. Чтобы ввести это понятие, условимся считать, что все прямые, рассматриваемые нами, являются направленными прямыми. Поэтому мы их будем обозначать двумя буквами, например UV, считая, что точка U предшествует точке V. Предполагается также, что точки U и V выбраны так, что рассматриваемые нами точки на этой прямой лежат между точками U и V.




Введем следующее определение. Прямая АВ называется параллельной прямой CD, если эти прямые не имеют общих точек и, каковы бы ни были точки Р и Q, лежащие соответственно на прямых АВ и CD, любой внутренний луч угла QPB пересекает луч QD (рис. 2-2). Если прямая АВ параллельна прямой CD, то пишут так: AB||CD.

Имеет место следующий признак параллельности прямых.

Теорема 1. Если прямые АВ и CD не имеют общих точек и существуют точки Р и Q, такие, что Р є АВ и Q є CD, и любой внутренний луч угла QPB пересекает луч QD, то AB||CD.

доказательство

Из предыдущего изложения еще не следует, что существуют параллельные прямые по Лобачевскому. Докажем теорему о существовании параллельных прямых.

Теорема 2. Пусть АВ — произвольная направленная прямая, а М — точка, не лежащая на ней. Тогда в плоскости МАВ существует одна и только одна прямая CD, проходящая через точку М и параллельная прямой АВ, т. е. CD || AB.




доказательство

Пусть М — точка, не лежащая на прямой a, a MN — перпендикуляр, проведенный из точки М на прямую а. Выберем на прямой a две точки A и В так, чтобы А — N — В. Из теоремы 2 следует, что через точку М проходит единственная прямая CD, параллельная направленной прямой АВ, и единственная прямая EF, параллельная направленной прямой ВА (рис. 2-7).

В ходе доказательства теоремы 2 мы установили, что углы DMN и FMN острые, поэтому CD и EF—различные прямые. Докажем, что DMN = FMN. Пусть, напротив, DMN ≠ FMN, например DMN > FMN. Рассмотрим луч MF', симметричный лучу MF относительно прямой MN (луч MF' не изображен на рис. 2-7). Этот луч является внутренним лучом угла DMN. Так как MF не пересекает прямую АВ, то и MF' не пересекает эту прямую. Но это противоречит определению параллельности прямых CD и АВ.

Таким образом, через каждую точку М, не лежащую на данной прямой а, проходят две прямые, параллельные прямой а, в двух разных направлениях. Эти прямые образуют равные острые углы с перпендикуляром MN, проведенным из точки М к прямой а. Каждый из этих углов называется углом параллельности в точке М относительно прямой а.




Докажем, что величина угла параллельности вполне определяется расстоянием от точки М до прямой а. На этом рисунке 2-8 NMD — угол параллельности в точке М относительно прямой a, a N'M'D' — угол параллельности в точке М' относительно прямой а', α = NMD, x = MN, α' = N'M'D' , x' = M'N'. Докажем, что если х = х', то α = α' . Пусть, напротив, α' ≠ α, например α' > α. Тогда существует внутренний луч h’ угла N'M'D', такой, что угол между лучами M'N' и h' равен α . Луч h' пересекает прямую а' в некоторой точке F'. На прямой а от точки N отложим отрезок NF = N'F' так, чтобы точки F и D лежали в одной полуплоскости с границей MN. Получим треугольник MNF, равный треугольнику МN'F' (треугольник MNF на рис. 2-8 не изображен). Так как NMF = α, то лучи MD и MF совпадают. Мы пришли к выводу, что прямые MD и а пересекаются. Это противоречит определению параллельных прямых. Таким образом, α. = α'.

Итак, α — функция от х: α = П(х). Она называется функцией Лобачевского и играет существенную роль в гиперболической геометрии. Из предыдущего изложения ясно, что функция П(х) определена для каждого положительного х и что 0 < П(х) < .

Н.И. Лобачевский получил аналитическое выражение этой функции:


,


где k — некоторое положительное число.

Из этой формулы следует, что П(х)— монотонно убывающая непрерывная функция. Из этой формулы следует также, что П(х) принимает все значения, лежащие между О и . Другими словами, любой острый угол является углом параллельности в некоторой точке относительно данной прямой.

Таким образом, в геометрии Лобачевского существует зависимость между угловыми и линейными величинами; в этом существенное отличие геометрии Лобачевского от геометрии Евклида. Так, в геометрии Лобачевского нет подобия фигур; в

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: