Xreferat.com » Рефераты по математике » Теория вероятности и математическая статистика

Теория вероятности и математическая статистика

Киевский политехнический институт

Кафедра КСОИУ

 

 

 

 

 

 

 

Конспект лекций

по дисциплине:

”Теоpия веpоятности и математическая статистика”

 

 

Преподаватель: Студент II курса

ФИВТ, гр. ИС-41

проф. Павлов А. А. Андреев А. С.

Киев - 1996 г.

Введение.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности.

Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”.

Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания.

Например: испытание - подбрасывание монеты.

Результатом испытания является событие. Событие бывает:

Достоверное (всегда происходит в результате испытания);

Невозможное (никогда не происходит);

Случайное (может произойти или не произойти в результате испытания).

Например: При подбрасывании кубика невозможное событие - кубик станет на ребро, случайное событие - выпадение какой либо грани.

Конкретный результат испытания называется элементарным событием.

В результате испытания происходят только элементарные события.

Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.

Например: Испытание - подбрасывание шестигранного кубика. Элементарное событие - выпадение грани с “1” или “2”.

Совокупность элементарных событий это пространство элементарных событий.

Сложным событием называется произвольное подмножество пространства элементарных событий.

Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному.

Таким образом, если в результате испытания может произойти только одно элементарное событие, то в результате испытания происходят все сложные события, в состав которых входят эти элементарные.

Например: испытание - подбрасывание кубика. Элементарное событие - выпадение грани с номером “1”. Сложное событие - выпадение нечетной грани.

Введем следующие обозначения:

А - событие;

w - элементы пространства W ;

W - пространство элементарных событий;

U - пространство элементарных событий как достоверное событие;

V - невозможное событие.

Иногда для удобства элементарные события будем обозначать Ei, Qi.

 

Операции над событиями.

1. Событие C называется суммой A+B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. При этом если элементарное событие входит и в A, и в B, то в C оно входит один раз. В результате испытания событие C происходит тогда, когда произошло событие, которое входит или в A или в B. Сумма произвольного количества событий состоит из всех элементарных событий, которые входят в одно из Ai, i=1, ..., m.

2. Событие C произведением A и B, если оно состоит из всех элементарных событий, входящих и в A, и в B. Произведением произвольного числа событий называется событие состоящее из элементарных событий, входящих во все Ai, i=1, ..., m.

4. Событие называется противоположным событию A, если оно удовлетворяет двум свойствам.

Формулы де Моргана: Теория вероятности и математическая статистика и Теория вероятности и математическая статистика

5. События A и B называются несовместными, если они никогда не могут произойти в результате одного испытания.

События A и B называются несовместными, если они не имеют общих элементарных событий.

C=A× B=V

Тут V - пустое множество.

Частость наступления события.

Пусть пространство элементарных событий конечно и состоит из m элементарных событий. В этом случае в качестве возможных исходов испытаний рассматривают 2m событий - множество всех подмножеств пространства элементарных событий W и невозможное событие V.

Пример:

W =(w 1, w 2, w 3)

A1=V

A2=(1)

A3=(2)

A4=(3)

A5=(1, 2)

A6=(2, 3)

A7=(1, 3)

A8=(w 1, w 2, w 3)

Обозначим систему этих событий через F. Берем произвольное событие AÎ F. Проводим серию испытаний в количестве n. n - это количество испытаний, в каждом из которых произошло событие A.

Частостью наступления события A в n испытаниях называется число

Теория вероятности и математическая статистика

 

Свойства частости.

Теория вероятности и математическая статистика

Частость достоверного события равна 1. n(U)=1.

Частость суммы попарно несовместных событий равна сумме частостей.

Рассмотрим систему Ai, i=1, ..., k; события попарно несовместны, т.е.

Теория вероятности и математическая статистика Событие Теория вероятности и математическая статистика Теория вероятности и математическая статистика

Пусть в результате некоторого испытания произошло событие A. По определению сумы это означает, что в этом испытании произошло некоторое событие Ai. Так как все события попарно несовместны, то это означает, что никакое другое событие Aj (i¹ j) в этом испытании произойти не может. Следовательно:

nA=nA1+nA2+...+nAk

Теория вероятности и математическая статистика

Теория вероятности используется при описании только таких испытаний, для которых выполняется следующее предположение: Для любого события A частость наступления этого события в любой бесконечной серии испытаний имеет один и тот же предел, который называется вероятностью наступления события A.

Следовательно, если рассматривается вероятность наступления произвольного события, то мы понимаем это число следующим образом: это частость наступления события в бесконечной (достаточно длинной) серии испытаний.

К сожалению, попытка определить вероятность как предел частости, при числе испытаний, стремящихся к бесконечности, закончилась неудачно. Хотя американский ученый Мизес создал теорию вероятности, базирующуюся на этом определении, но ее не признали из-за большого количества внутренних логических несоответствий.

Теория вероятности как наука была построена на аксиоматике Колмогорова.

Аксиоматика теории вероятности.

Построение вероятностного пространства.

Последовательно строим вероятностное пространство.

Этап 1:

Имеется испытание. В результате проведения испытания может наблюдаться одно событие из серии событий e . Все события из системы e называются наблюдаемыми. Введем предположение, что если события A Ì e , B Ì e наблюдаемы, то наблюдаемы и события Теория вероятности и математическая статистика.

Система событий F называется полем событий или алгеброй событий, если для двух произвольных событий A, B Ì F выполняется:

Дополнения Теория вероятности и математическая статистика

(A+B) Î F, (A× B) Î F

все конечные суммы элементов из алгебры принадлежат алгебре

все конечные произведения элементов из алгебры принадлежат алгебре

все дополнения конечных сумм и произведений принадлежат алгебре.

Таким образом, систему e мы расширяем до алгебры или поля F путем включения всех конечных сумм, произведений, и их дополнений. Т.е. считаем, что в результате проведения испытания наблюдаемая система является полем или алгеброй.

Множество всех подмножеств конечного числа событий является наблюдаемой системой - алгеброй, полем.

Этап 2:

Каждому событию A Î F ставим в соответствие число P(A), которое называется вероятностью наступления события A. Такая операция задает вероятностную меру.

Вероятностная мера - числовая скалярная функция, аргументами которой являются элементы из системы алгебры F. Введенная вероятностная мера удовлетворяет системе из трех аксиом.

Теория вероятности и математическая статистика Теория вероятности и математическая статистика

P(U)=1.

Рассмотрим конечную или бесконечную систему попарно несовместных событий, каждое из которых принадлежит алгебре F.

Теория вероятности и математическая статистика. Если Теория вероятности и математическая статистика, то Теория вероятности и математическая статистика.

Алгебра событий называется s - алгеброй, если эта система событий содержит в себе все конечные суммы и произведения из алгебры F и их дополнения, а также все бесконечные суммы и произведения из алгебры и их дополнения.

Пример: В пространстве R1 зададим в качестве поля событий все конечные интервалы вида a³ x> b, b¹ a.

Распространение этой алгебры на s - алгебру приводит к понятию борелевской алгебры, элементы которой называются борелевскими множествами. Борелевская алгебра получается не только расширением поля вида a³ x> b, но и расширением полей вида a> x³ b, a³ x³ b.

Над наблюдаемым полем событий F задается счетно-аддитивная мера - числовая скалярная функция, элементами которой являются элементы поля F, т.е. события. Она удовлетворяет следующим трем условиям-аксиомам теории вероятности.

Теория вероятности и математическая статистика Теория вероятности и математическая статистика. P(A) - число, принадлежащее сегменту [0, 1] и называющееся вероятностью наступления события A.

P(A) Î [0, 1] P(U)=1.

Пусть имеется A1, A2, A3,..., Ak - система попарно несовместных событий

Теория вероятности и математическая статистика Если Теория вероятности и математическая статистика, то Теория вероятности и математическая статистика.

Теорема о продолжении меры.

Построим минимальную s - алгебру, которой принадлежит поле событий F (например, борелевская s - алгебра - это минимальная s - алгебра, которая содержит поле всех полуинтервалов ненулевой длины).

Тогда доказывается, что счетно-аддитивная функция P(A) однозначно распространяется на все элементы минимальной s - алгебры и при этом ни одна из аксиом не нарушается.

Таким образом, продленное P(A) называется s - аддитивной мерой.

s - алгебра содержит ненаблюдаемые события наряду с наблюдаемыми.

Но в аксиоматической теории вероятности считается, что может произойти любое событие из s - алгебры.

Расширение поля наблюдаемых событий на s - алгебру связано с невозможностью получить основные результаты теории вероятности без понятия s - алгебры.

Определение вероятностного пространства.

Вероятностным пространством называется тройка (W , s , P), где

W - пространство элементарных событий, построенное для данного испытания;

s - s -алгебра, заданная на W - системе возможных событий, которая интересует исследователя, в результате проводимых испытаний;

P - s - аддитивная мера, т.е. s - аддитивная неотрицательная функция, аргументами которой являются аргументы из s - алгебры и удовлетворяющая трем аксиомам теории вероятности.

Теория вероятности и математическая статистика Теория вероятности и математическая статистика. P(A) - называется вероятностью наступления события A.

Вероятность достоверного события равна 1 P(W )=1.

Вероятность суммы несовместных событий равна сумме вероятностей

Теория вероятности и математическая статистика

Теория вероятности и математическая статистика, Теория вероятности и математическая статистика.

k - возможно бесконечное число.

Следствие:

Вероятность невозможного события равна 0.

По определению суммы имеет место неравенство W +V=W . W и V несовместные события.

По третей аксиоме теории вероятности имеем:

P(W +V)=P(Q)=P(U)=1

P(W )+P(V)=P(W )

1+P(V)=1

P(V)=1

Пусть W состоит из конечного числа элементарных событий W ={E1, E2,..., Em} тогда по определению Теория вероятности и математическая статистика. Элементарные события несовместны, тогда по третей аксиоме теории вероятности имеет место Теория вероятности и математическая статистика

Пусть некоторое событие AÌ W состоит из k элементарных событий, тогда {Ei1, Ei2,..., Eik} Теория вероятности и математическая статистика

Доказать: Если AÌ B, то P(B)³ P(A), B=A+C, A и C несовместны.

* Пусть B=A+C, A и B несовместны. Тогда по третей аксиоме теории вероятности P(B)=P(A+C)=P(A)+P(C) т.к. 1³ P(C)³ 0 - положительное число, то P(B)³ P(A).

Классическое определение вероятности.

Пусть W состоит из конечного числа элементарных событий и все элементарные события равновероятны, т.е. ни одному из них из них нельзя отдать предпочтения до испытания, следовательно, их можно считать равновероятными.

Тогда достоверное событие Теория вероятности и математическая статистика m - количество равновероятных событий

Теория вероятности и математическая статистика, Теория вероятности и математическая статистика, Теория вероятности и математическая статистика

Пусть произвольное событие Теория вероятности и математическая статистика Тогда Теория вероятности и математическая статистика, т.е. событие A состоит из k элементарных событий.

Если элементарные события являются равноправными, а, следовательно, и равновероятными, то вероятность наступления произвольного события равна дроби числитель которой равен числу элементарных событий, входящих в данное, а знаменатель - общее число элементарных событий.

Условная вероятность.

P(A/B)

Условной вероятностью наступления события A, при условии события B, называется вероятность наступления события A в результате испытаний, если известно, что в это испытании произошло событие B.

Вывод формулы условной вероятности для случая равновероятных элементарных событий

 

 

 

 

 

 

 

 

Действительно, в данном испытании произошло одно из t событий, входящих в B. Все элементарные события равновероятны, следовательно, для данного испытания вероятность наступления произвольного элементарного события, входящего в B равна 1/t. Тогда

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: