Xreferat.com » Рефераты по математике » Математика (билеты)

Математика (билеты)

(шпаргалка)

Билет№1

1)Функция y=F(x) называется периодической, если существует такое число Т, не равное нулю, что для любых значений аргумента из области определения функции выполняются  равенства f(x-T)=f(x)=f(x+T). Число Т называется периодом функции. Например, y=sinx – периодическая функция (синусоиду нарисуешь сам (а)) Периодом функции являются любые числа вида T=2PR, где R –целое, кроме 0. Наименьшим положительным периодом является число T=2P. Для построения графика периодической функции достаточно построить часть графика на одном из промежутков длинной Т, а затем выполнить параллельный перенос этой части графика вдоль оси абсцисс на +-Т, +-2Т, +-3Т,…

2)Степенью числа а, большего нуля, с рациональным показателем r=m/n (m-целое число;n-натуральное, больше 1) называется число nSQRa^m, т.е. a^m/n = nSQRa^m. Степень числа 0 определена только для положительных показателей; 0^r=0 для любого r>0. Свойства степеней с рациональным показателем Для любых рациональных чисел r иs и любых положительных a и b справедливы следующие свойства. 1) Произведение степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным сумме показателей множителей: a^r * a^s = a^r+s.

2) Частное степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным разности показателей делимого и делителя: a^r : a^s = a^r-s.

3) При возведении степени в степень основание оставляют прежним, а показатели перемножают: (a^r)^s = a^rs   4) Степень произведения равна произведению степеней: (ab)^r = a^r * b^r.   5) Степень частного равна частному степеней (a/b)^r = a^r / b^r.   6) Пусть r рациональное число и число a больше нуля, но меньше числа b, 0<a<b, тогда: a^r < b^r , если r- положительное число; r^r > b^r, если r-отрицательное число.7) Для любых рациональных чисел r и s из неравенства r<s следует, что: a^r <a^s при a>1 ; a^r > a^s при 0<a<1.    Докажем свойство 2 Пусть r=m/n и s=p/q, где n и q – натуральные числа, а m и p – целые числа. По определению степени с  рациональным показателем имеем: a^m/n : a^p/q = nSQRa^m : qSQRa^p. Приведём корни к одному показателю. Для этого воспользуемся свойством корней n-й степени: nSQRa = nrSQRa^r, r>0. Имеем: nSQRa^m : qSQRa^p = nqSQRa^mq : nqSQRa^pn = nqSQRa^mq / nqSQRa^pn Используя свойство частного корней, получим: nqSQRa^mq / nqSQRa^pn = nqSQRa^mq / a^pn = nqSQRa^mq-pn. Применим определение степени с рациональным показателем: nqSQRa^mq-pn = a^mq-pn/nq = a^mq/nq-pn/nq = a^m/n-p/q = a^r-s.

   Билет №2

1)Точка Х0 наз-ся точкой максимума функции f, если для всех х из некоторой окрестности точки х0 выполнено неравенство f(x)£f(x0)

Окрестностью точки х0 наз-ся любой интервал, сод-щий

эту точку. Например, функция y=-x*x-3 имеет точку максимума х0=0.

Точка х0 наз-ся точкой минимума функции f, если для всех х из некоторой окрестности х0 выполнено неравенство f(x0) £f(x)

Например, функция y=x+2 имеет точку минимума х0=0.

2)1)Если |a|>1 то уравнение sinx=a корней не имеет, так как |sinx|£1 для любого х.

2)Пусть |a|£1 а) На промежутке –пи/2;пи/2 функция y=sinx возрастает, следовательно по теореме о корне, уравнение sinx =a  имеет один корень x=arcsin a.

Б) На промежутке пи/2;3пи/2 функция y=sin x убывает, значит по теореме о корне ур-ие sin x=a имеет одно решение x=пи-arcsin a.

В) учитывая периодичность функции y= sin x (период функции равен 2пи n) решение ур-ия можно записать так: х=arcsin a +2пи n

x=пи- arcsin a +2пи n

решение данного ур-ия можно записать в виде следующей формулы

x=(-1)^n  arcsin a + пи n

при четных n(n=2k) мы получим все решения, записанные первой формулой , а при нечетных n(n=2k+1)- все решения записанные второй формулой. 

  

Билет №3

1)арксинусом числа а называется число, для которого выполнены следующие два условия: 1)-p/2 <= arcsin a <= p/2; 2) sin(arcsin a)=a. Из втоого условия следует, что |a|<=1 Пример1. (рис 26) arcsinSQR3 / 2 = p/3, так как: 1) –p/2 <= p/3 <=p/2; 2)sin p/3= SQR3 / 2 Пример2. Arcsin SQR5/2 не имеет смысла, так как  SQR5 / 2 >1, a arcsin a определён при –1 <= a <= 1 Определение Арксинусом числа а называется такое число из отрезка [-Пи/2;Пи/2], синус которого равен а.

2)Если функция F-первообразная функции f на промежутке I, то функция y=F(x)+C (c-const) также является первообразной функции f на промежутке I. Любая первообразная функции f на промежудке I может быть записана в виде F(x)+C. Доказательство. 1) Воспользуемся определением первообразной: (F(x)+C)’=F’(x)+C’=f(x), следовательно, y=F(x)+C – первообразная функции f на промежутке I. 2) Пусть Ф и F- первообразные функции f на промежутке I.   Покажем, что разность Ф-F равна постоянной. Имеем  (Ф(x) – F(x))’ = Ф’(x) – F'(x)=f(x)-f(x)=0, следовательно, по признаку постоянства функции на интервале Ф(x)-F(x)=C. Значит любую первообразную можно записать в виде F(x)+C. Графики любых двух первообразных для функции y=f(x) получаются друг из друга параллельным переносом вдоль оси Ox (рис. 18)

Билет №4

1)Арккосинусом числа а называется такое число, для которого выполнены следующие два условия: 1) 0<=arccosa<=p; 2)cos(arccos a)=a. Из условия 2 следует, что |a|<=1 Пример 1 (рис 28) arccos1/2=p/3, так как: 1)0<= p/3 <= p; 2) cos p/3 = ½. Пример 2. Arccos p не имеет смысла , так как p ~=3,14 > 1; arccos a  определён при |a|Б=1

2)Показательной функцией называется функция вида y=a^x, где а- заданное число, а >0, a не равно 1. Свойства показательной функции 1) Областью определения показательной функции являются все действительные числа. Это следует из того, что для любого x принадлежащего R определено значение степени a^x (при a>0). 2) Множеством значений показательной функции являются все положительные действительные числа: E(y)=(0;+бескон.) 3) а) Показательная функция y+a^x возрастает на всей области определения, если a>1.  б) Показательная функция Y=a^x убывает на всей области определения, если 0<a<1.  Докажем, что если a>1, то большему значению аргумента (x2>x1) соответствует большее значение функции (a^x2 > a^x1). Из свойств степени известно, если r>s и a>1, то a^r >a^s. Пусть х2 > x1 и a > 1, тогда a^x2 >a^x1 (по свойству степени). А это означает, что функция  y=a^x1 при a>1 возрастает на всей области определения. Докажем, что если 0 < a<1, то большему значению аргумента (x2>x1) соответствует меньшее значение функции (a^x2 < a^x1). Из свойств степени известно, если r>s и 0<a<1, то a^r<a^s. Пусть x2>x1 и 0<a<1, тогда a^x2 < a^x1 (по свойству степени). А это означает, что функция y=a^x при 0<a<1 убывает на всей области определения.   4) Нет таких значений аргумента, при которых значения показательной функции равны нулю, т.е. у показательной функции нет нулей. 5)Показательная функция непрерывна на всей области определения.  6) Показательная функция дифференцируема в каждой точки области определения, производная вычисляется по формуле (a^x)’ = a^x ln a. (график на рисунке 29)

   Билет№ 5

1)На интервале (-Пи/2;Пи/2) функция тангенс возрастает и принимает все значения из R. Поэтому для любого числа а на интервале (-Пи/2;Пи/2) существует единственный корень b уравнения tgx=a. Это число b называют арктангенсом числа а и обозначают arctga.      Определение Арктангенсом числа а называется такое число из интервала (-Пи/2;Пи/2) тангенс которого равен а.  Пример arctg1=Пи/4, так как tgПи/4=1 и Пи/4Î(-Пи/2;Пи/2);    arctg(-SQR3)=-Пи/3, так как tg(-Пи/4)=-SQR3 и –Пи/3Î(-Пи/2;Пи/2).

2)Логарифмической функцией называется функция вида y = loga x, где а -заданное число, a>0, a не рано 1. Свойства логарифмической функции 1) Областью определения логарифмической функции являются все положительные действительные числа. Это следует из определения логарифма числа b по основанию a; loga b имеет смысл, если b>0 2) Множеством значений логарифмической функции являются все действительные числа. Пусть y0 – произвольное действительное число. Покажем, что найдётся такое положительное значение аргумента x0, что выполняется равенство y0 = logax0. По определению логарифма числа имеем: x0 = a^y0, a^y0 > 0. Мы показали, что нашлось значение x0 > 0, при котором значение логарифмической функции равно у0 (у0 – произвольное действительное число). 3)  Логарифмическая функция обращается в нуль при х=1. Решим уравнение logax=0. По определению логарифма получаем: a^0 = x, т.е. x = 1. 4) а) логарифмическая функция y=loga x возрастает на всей области определения, если a>1.Докажем, что большему значению аргумента (х2 > х1) соответствует большее значение функции  (loga x2 > loga x1), если a>1. Пусть x2 > x1 > 0; тогда используя основное логарифмическое тождество, запишем это неравенство в виде a^logax2 > a^logax1 . (1) В неравенстве (1) сравниваются два значения показательной функции. Поскольку при a>1 показательная функция возрастает, большее значение функции может быть только при большем значении аргумента, т.е. logax2 > logax1. б)Логарифмическая функция y=logax убывает на всей области определения, если 0<a<1. 5) Логарифмическая функция y=logax: а) при a>1 принимает положительные значения, если x>1; отрицательные значения, если 0<x<1 б) при  0<a<1 принимает положительные значения, если 0<x<1, и отрицательные значения, если x>1.  Пусть a>1, тогда функция y=logax возрастает на всей области определения (рис. 31); причём loga1=0. Из этого следует, что: для x>1  logax > loga1, т.е. logax>0; для 0<x<1  logax < loga1, т.е. logax <0. Пусть 0<a<1; тогда функция y=logax убывает на всей области определения (рис.32); причём loga1=0. Из этого следует, что: для x>1  logax < loga1, т.е. logax < 0; для 0<x<1  logax > loga1, т.е. logax > 0. 6) Логарифмическая функция непрерывна на всей области определения.

   Билет №6

1)Пусть на некотором промежутке задана функция y=f(x); x0 – точка этого промежутка; Dx – приращения аргумента x; x0 + DX  также принадлежит этому промежутку; Dy – приращение функции. Предел отношения (если он существует) приращения функции к приращению аргумента при стремлении приращения аргумента к нулю называется производной функции в точке. Пусть материальная точка движется по координатной прямой по закону x=x(t), т.е. координата этой точки x- известная функция времени t. Механический смысл производной состоит в том, что производная от координаты по времени есть скорость: v(t) = x’(t).

2)1) Если |a|>1, то уравнение cos x = a решений не имеет, так как |cos x|<=1 для любого x. 2) Рассмотрим случай |a|<=1(рис 35) а) На примежудке [0;Пи] функция y=cosx убывает, значит, уравнение cosx=a имеет один корень x=arccos a. Учитывается, что функция y=cos x – периодическая с периодом 2Пиn, запишем все решения уравнения cosx=a на промежутке [2Пиn; Пи+2Пиn], n принадлежит Z, в виде x = arccos a+ 2Пиn, где n принадлежит Z. Б)  На промежутке [-Пи; 0] функция y =cosx возрастает, следовательно, уравнение cosx=a имеет один корень, а именно,x=-arccos a. Учитывая периодичность функции y= cos. Делаем вывод, что решением уравнения cos x = a на промежудке [-Пи+2Пи; 2Пиn], где n принадлежит Z, являются числа вида x=-arccos a + 2 Пиn, где n принадлежит Z. Таким образом, все ершения уравнения могут быть записаны так: x=+-arccos a + 2Пиn, где n принадлежит Z.

Билет № 7

1)Пусть на некотором промежутке задана функция y=f(x); x0-точка этого промежутка; Dx-приращение аргумента х; точка х0+ Dx принадлежит этому промежутку; Dy-приращение функции.  Предел отношения (если он существует) приращения функции к приращению аргумента при стремлении приращения аргумента к нулю называется производной функции в точке.  Пусть задана дифференцируемая функция y=f(x) (рис.36). Геометрический смысл производной состоит в том, что значение производной функции в точке x0 равно угловому коэффициенту касательной, проведённой к графику функции в точке с абсциссой x0: f’(x0)=R, где R-угловой коэффициент касательной.

2)1) На промежутке (-Пи.2 ; Пи.2) функция y=tgx возрастает, значит, на этом промежутке, по теореме о корне, уравнение tgx=a имеет один корень, а именно, x=arctg a (рис 37).  2) Учитывая, что период тангенса равен Пиn, все решения определяются формулой x=arctg a + Пиn, nпринадлежит Z.

   Билет №8

1) Пусть ф-ция f(x) задана на некотором промежутке, а –точка этого промежутка. Если для ф-ции выполняется приближенное равенство f(x) »f(a)

с любой , наперед заданной точностью, для всех х , близки х к а , то говорят , что ф-ция непрерывна в точке а. Иными словами ф-ция f непрерывна в точке а , если f(x) ®f(a) при х ®а.

Ф-ция непрерывная в каждой точке промежутка наз-ся непрерывной на промежутке.

Гр. непрерывной на промежутке ф-ции представляет собой непрерывную линию. Иными словами гр. можно нарисовать не отрывая карандаша от бумаги.

Например ф-ция f(x)=3^x непрерывна в точке х0=2.Действаительно 3^x ®3^2, при х®2. Ф-ция f(x)=3^x непрерывна на множестве всех действительных чисел , а ее график можно нарисовать не отрывая карандаша от бумаги.

2) Арифметическим корнем n-ой степени из числа а наз-ся неотрицательное число n-ая степень к-рого равна а.

Св-ва корней: Для любых натуральных n, целого k и любых неотрицательных чисел a и b выполняются следующие св-ва:

N sqr ab= n sqr a * n sqr b

n sqr (a/b)= (n sqr a)/( n sqr b) b ¹0

n sqr (k sqr a)= kn sqr (a), k> 0

n sqr (a) = kn sqr (a^k) ,k>0

n sqr (a^k)=( n sqr a)^k (ели k£0,то а¹0)

Для любых неотрицательных чисел а и b таких,  что а < b выполняется неравенство:

n sqr a< n sqr b, если 0£a<b

      Док-во св-ва №5: По опр-нию корня n-ой степени (n sqr a^k)^n=a^k; (n sqr a)^k³ 0, так как n sqr a³ 0. Найдем n-ю степень выражения (n sqr a)^k. По св-ву возведения степени в степень ((n sqr a)^k)^n=(n sqr a)^nk=(( n sqr a)^n)^k;по определению корня n-ой степени ((n sqr a)^n)^k=a^k.

Следовательно n sqr a^k=( n sqr a)^k.

   Билет №9

1. Все рациональные и дробно-рациональные ф-ции непрерывны на всей области определения. Этот факт следует из того что рациональные и дробно-рациональные ф-ции дефференцируемы  во всех точках своих областей опр-ия.

Например: ф-ция f(x)=x^3-7X^2+24x непрерывна на множестве действительных чисел; а ф-ция g(x)=(x^3+8)/(x-2) непрерывна на промежутке (-¥:2) и на промежутке (2;+ ¥)

2. Логарифмом числа b наз-ся показатель степени в к-рую нужно возвести основание а чтобы получить число b.

Из опр-ия имеем:  a^ logab =b (осн-ое лог-ое тождесто)

Св-ва  логарифмов: При  любом а>0(а¹1), и любых пол-ных х и у выполняются следующие св-ва:

loga1=0

logaа=1

loga(ху)= logaХ+ logaУ

Док-во: Воспользуемся осн-ным лог-им тождеством

   a ^ logab =b и св-ом показат-ной ф-ции

а^ х+у =а^x * а^y         имеем

а^ loga(xy)=xy= a^ logax *a^ logay =a ^logax +logay

loga(Х/У)= logaХ- logaУ

logaХ^Р= рlogaХ

Формула перехода:

logaХ= logbX/ logbA

Билет №10.

1. Ф-ция F наз-ся первообразной ф-ции f на промежутке I, если для всех значений аргумента из этого промежутка F¢(x)=f(x). Например ф-ция F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех действительных чисел. Действительно F¢(x)=12X^2+3 , т.е. F¢(x)=f(x).

2. Если каждому действительному числу поставлен в

Похожие рефераты: