Xreferat.com » Рефераты по математике » Лекции по матану (III семестр) переходящие в шпоры

Сколько стоит написать твою работу?

Работа уже оценивается. Ответ придет письмом на почту и смс на телефон.

?Для уточнения нюансов.
Мы не рассылаем рекламу и спам.
Нажимая на кнопку, вы даёте согласие на обработку персональных данных и соглашаетесь с политикой конфиденциальности

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.
В таком случае, пожалуйста, повторите заявку.

Спасибо, вам отправлено письмо. Проверьте почту .

Если в течение 5 минут не придет письмо, пожалуйста, повторите заявку.
Хотите промокод на скидку 15%?
Успешно!
Отправить на другой номер
?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа".

Лекции по матану (III семестр) переходящие в шпоры

1 Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x,y), P= (x,y) D – произвольные ф-ции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область D разбивается на n частых областей D1…Dn конечным числом произв. кривых. Если S – площадь D, то Si – площадь каждой частной области. Наибольший из диаметров областей обозн . В каждой частной области Di возьмем произв. точку Pi (i , Di) Di, наз. промежуточной. Если диаметр разбиения D  0 , то число n областей Di  . Вычислим зн-ие ф-ции в промежуточных точках и составим сумму:I = f(i, Di)Si (1), наз. интегральной суммой ф-ции. Ф-ция f(x,y) наз. интегрируемой в области D если существует конечный предел интегральной суммы.

Двойным интегралом ф-ии f(x,y) по области D наз. предел интегральной суммы при  0. Обозн:

или

2 Понятие числового

ряда и его суммы

Пусть задана бесконечная последовательность чисел u1, u2, u3…

Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие- членами ряда.

Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+..+un

Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.

№ 2

1 Условие существования

двойного интеграла

Необходимое, но недостаточное:

Ф-ция f(x,y) интегрируема на замкнутой области D, ограничена на D.

1 достаточный признак существования: если ф-ция f(x,y) непрерывна на замкнутой, огр. области D, то она интегрируема на D.

2 достаточный признак существования: если ф-ция f(x,y) ограничена в замкнутой области D с какой-то границей и непрерывна в ней за исключением отдельных точек и гладки=х прямых в конечном числе где она может иметь разрыв, то она интегрируема на D.

2 Геометрический и

арифметический ряды

Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим: или

а+ аq +…+aqn-1

a 0 первый член q – знаменатель. Сумма ряда:

следовательно конечный предел последовательности частных сумм ряда зависит от величины q

Возможны случаи:

1 |q|

т. е. ряд схд-ся и его сумма 2 |q|>1 и предел суммы так же равен бесконечности

т. е. ряд расходится.

3 при q = 1 получается ряд: а+а+…+а… Sn = na ряд расходится

4 при q1 ряд имеет вид: а-а+а … (-1)n-1a Sn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.

Рассмотрим ряд из бесконечных членов арифметической прогрессии: u – первый член, d – разность. Сумма ряда

при любых u1 и d одновременно 0 и ряд всегда расходится.

№3

1 Основные св-ва 2ного интеграла

1. Двойной интеграл по области D = площади этой области.

2. Если область G содержится в Д, а ф-ция ограничена и интегрируема в Д, то она интегрируема и в G.

3. Аддитивное св-во. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то:

4. константы выносятся за знак интеграла, а сумму в ф-ции можно представить в виде суммы интегралов:

5. Если ф-ции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x,y) 0 то и f/g интегрируема в Д.

6. Если f(x,y) и g(x,y) интегрируемы в Д и всюду в этой области f(x,y) <= g(x,y), то:

В частности: g(x,y) >=0 то и

7. Оценка абсолютной величины интеграла: если f(x,y) интегрируема в Д, то и |f(x,y)| интегрир. в Д причем

обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f.

8. Теорема о среднем значении.

Если ф-ция f(x,y) интегр. в Д., то в этой области найдется такая точка (, ) Д, что:

(2), где S – площадь фигуры Д. Значение f(, ) опред по ф-ле (2) наз. средним значением ф-ции f по области Д.

2 С-ва сходящихся рядов

Пусть даны два ряда: u1+u2+…un =(1) и v1+v2+…vn = (2)

Произведением ряда (1) на число R наз ряд: u1+u2+…un =(3)

Суммой рядов (1) и (2) наз ряд:

(u1+v1)+(u2+v2)+…(un+vn) = (для разности там только - появица)

Т1 Об общем множителе

Если ряд (1) сходится и его сумма = S, то для любого числа ряд = тоже сходится и его сумма S’ = S Если ряд (1) расходится и 0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.

Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S’, то и ряд: тоже сходится и если его сумма, то = S+S’. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=vn)

Для ряда (1) ряд называется n – ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: rn =

Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + rn

Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.


№4

1 Сведение

2ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.

D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)

Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если фция f(x,y) задана на Д и при каждом х [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.

2 Необходимый

признак сходимости рядов

Если ряд сходится, то предел его общего члена равен нулю:

Док-во:

Sn=u1+u2+…+un

Sn-1u1+u2+…+un-1

un=Sn-Sn-1, поэтому:

Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.

№5

1 Замена переменных в двойном интеграле.

Общий случай криволинейных координат

Пусть существует ф-ция f(x,y) интегр на области Д, можно прямолинейные координаты x, y с помощью формул преобразования перейти к криволинейным: x = x(u,v), y=y(u,v), где эти ф-ции непрерывные вместе с частными производными первого порядка, устанавливают взаимно однозначное и в обе стороны непрерывное соответствие между точками плоской области Д и области Д’ и определитель преобразования, наз. Якобианом не обращается в 0:если это выполняется можно пользоваться ф-лой:

2 Интегральный признак

сходимости ряда. Ряд Дирихле

Т1 Пущай дан рядт (1), члены которого неотрицательны, и не возрастают: u1>=u2>=u3…>=un

Если существует ф-ция f(x) неотрицательная, непрерывная и не возрастающая на [1,+] такая, что f(n) = Un, n N, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл:, а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).

Применим сей признак для исследования ряда Дирихле: Вот он: , R Сей ряд называют обобщенным гармоническим рядом, при >0 общий член оного un=1/n 0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет ф-ция f(x)=1/x (x>=1)сия ф-ция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:

Возможны три случая:

1 >1,

Интеграл а потому и ряд сходится.

2 0<<1,

Интеграл и ряд расходится

3 =1,

Интеграл и ряд расходится


№ 6

1 Двойной интеграл

в полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, ) где r = |ОA| расстояние от О до А полярный радиус. = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+, 0<= <=2 .

Зависимость между прямоугольными и полярными координатами: x = rcos , y = rsin .

Якобиан преобразования будет равен:

И формула при переходе примет вид:

2 Признаки сравнения

Т(Признаки сравнения)

Пущай и ряды с неотрицательными членами и для любого n выполняется нер-во:

un<=vn (1)тогда

1 Если ряд vn сходится, то сходится и ряд un

2 если ряд un расходится, то расходится и ряд vn. Т. е. говоря простыми русскими словами для простых русских людей (ну для дураков вроде тебя): Из сходимости ряда с большими членами следует сходимость ряда с меньшими, а из расходимости ряда с меньшими членами следует расходимости ряда с большими и не наоборот!!!

Причем можно требовать, чтобы неравенство (1) выполнялось не для всех номеров n, а начиная с некоторого n0, т. е. для некоторых номеров меньших n0 неравенство (1) может и не выполняться. При применении сего признака сравнения удобно в качестве ряда сравнения брать ряд Дирихле или геометрический ряд, с которыми и так уже все ясно.

Т3 Засекреченная

Если сущ вышеописанные неотр. ряды, то если сущ предел:

(0) тада оба эти ряда сходятся.

№7

1 Вычисление

площади плоской области

с помощью 2ного интеграла

Если Д правильная в направлении оу a<=x<=b, y1(x)<=y<=y2(x), то

Если Д огр линиями в полярных координатах, то

2 Признаки Даламбера и Коши

Т(Признак Далембера)

Пущай для ряда un с положит членами существует предел:

, то

1 Если k<1, то ряд сходится

2 Если k>1 ряд расходится

Т(Признак Коши)

Пусть для того же самого ряда (т. е. положительного) существует предел:, тогда

1 Если k<1, то ряд сходится

2 Если k>1 ряд расходится

А вот если эти все пределы по Коши и дедушке Даламберу равны 1, то о сходимости или расходимости ряда ничего сказать низзя. Вот низзя и все тут. Вот.

№8

1 Вычисление объема

с помощью 2ного интеграла

Рассматривая в пространстве тело Р, огр снизу плоскостью оху, сверху z = f(x,y), кот проектируется в Д, сбоку границей области Д, называемое криволинейным цилиндром. Объем этого тела вычисляют по формуле:

если f(x,y)<=0 в Д тор тело находится под плоскостью оху. Его объем равен объему цилиндрического тела. огр сверху ф-цией:

z = |f(x,y)|>=0.

тогда

если в Д ф-ция меняет знак, то область разбивается на 2. Область Д1, f(x,y)>=0; Д2, f(x,y)<=0, тогда:

2 Знакочередующиеся ряды. Признак Лейбница.

Ряд называется знакочередующимся если каждая пара соседних членов имеет разные знаки (один ♀, другой ♂), если считать каждый член сего ряда положительным то его можно записать в виде:

Т (Признак Лейбница)

Если для знакочередующегося ряды выполняются условия:

1) u1>=u2>=u3…>=un>=un+1…

2)

то ряд сходится, а его сумма и остаток rn удовлетворяют неравенствам: 0<=S<=un и |rn|<=un+1

Ряд удовлетворяющий условиям теоремы наз. рядом Лейбница.

Если условие чередования знаков выполняется не с первого члена, а с какого-нибудь исчо, то при существовании равного 0 предела ряд будет также сходится.

№9

1 Вычисление

площади поверхности

с помощью двойного интеграла.

Пусть дана кривая поверхность Р, заданная ур-ями z = f(x,y) и имеющая границу Г, проецирующуюся на плоскость оху в область Д. Если в этой области ф-ция f(x,y) непрерывна и имеет непрерывные частные производные: тогда площадь поверхности Р вычисляется:

для ф-ций вида x = (y,z) или y = (x,z) там будут тока букыв в частных производных менятца ну и dxdy.

2 Знакопеременные ряды.

Абсолютная и условная

сходимость рядов.

Ряд называют знакопеременным, если его членами являются действительные числа, а знаки его членов могут меняться как кому в голову взбредет. Пусть дан ряд:

u1+u2…+un=(1), где un – может быть как положительным, так и отрицательным. Рассмотрим ряд состоящий из абсолютных значений этого ряда:

|u1|+|u2|…+|un|=(2),

Если сходится ряд (2), то ряд (1) называют абсолютно сходящимся, а вот если ряд (1) сходится, а ряд (2) расходится. то ряд (1) наз сходящимся условно.

Т. Признак абсолютной сходимости:

Если знакочередующийся ряд сходится условно. то он и просто так сходится, при этом:

Доквы:

т. к. 0<=|un|+un<=2|un|, то по признаку сравнения сходится ряд |un|+un, тогда сходится ряд: (|un|+un)-|un|=un. Далее, т. к. по св-ву абсолютной величины |Sn|=|u1+u2+…+un|<=|un| n N, то переходя к пределу получим:

Т2 Если ряд (1) абсолютно сходится, то и любой ряд составленный из тех же членов, но в любом другом порядке тоже абсолютно сходится и его сумма равна сумме ряда un – Sn. А вот с условно сходящимися рядами все гораздо запущенней.

Т(Римана)

Если знакопеременный ряд с действительными членами сходится условно, то каким бы ни было дейст. число S можно так переставить члены ряда, что его сумма станет равна S, т. е. сумма неабсолютно сходящегося ряда зависит от порядка слагаемых

№10

1 Вычисление массы,

координат центра масс,

моментов инерции плоской

материальной пластины с

помощью 2ного интеграла.

Масса плоской пластины вычисляется по ф-ле:

, где (х, у) – поверхностная плотность.

Координаты центра масс выч по ф-ле:

если пластина однородная, т. е. (х, у) – const, то ф-лы упрощаются:

Статические моменты плоскостей фигуры Д относит осей оу и ох

Момент инерции плоской пластины относительно осей ох, оу, начала координат:

J0=Jx+Jy

если пластина однородная, то ро вышвыривается на фиг и считается равной 1.

2 Сходимость функциональных последовательностей и рядов

Функциональной последовательностью заданной на множестве Е, наз. последовательность ф-ций {fn(x)} (1)определенных на Е и принимающих числовые действительные значения.

Пусть задана поледовательность числовых ф-ций {un(x)} Формальнг написанную сумму: (2) называют функциональным рядом на множестве Е, а ф-цию un(x) – его членами. Аналогично случаю числовых рядов сумма: Sn(x) = u1(x)+u2(x)+…+un(x) называется частичной суммой ряда n порядка, а ряд: un+1? un+2… - его n-ным остатком. при каждом фиксированном х = х0 Е получим из (1) числовую последовательность {fn(x0)}, а из (2) – числовой ряд, которые могут сходится или расходится. если кто-нибудь из оных сходится, то сходится и функциональная посл (1) в т х0, и сия точка наз. точкой сходимости.

Если посл(1) сход на м-ж Е, то ф-ция f, определенная при x E f(x) = назывется пределом посл (1), если ряд(2) сходится на м-ж Е, то ф-ция S(x) определенная при x Е равенством

S(x)=

называется суммой ряда (2).

Остаток ряда сходится только когда на этом же м-ж сходится сам ряд., если обозначить сумму остатка ряда через rn(ч), то S(x) = Sn(x)+rn(x)

Если ряд (2) сходится абсолютно, то он наз абсолютно сходящимся на м-ж Е. Множество всех точек сходимости функционального ряда наз областью сходимости. Для определения области сходимости можно использовать признак Даламбера и Коши. С ихнею помашшю ф-ц ряд исследуется на абсолютную сходимость Например, если существует

и

, то ряд (2) абсолютно сходится при k(x)<1 и расходится при k(x)>1.

№11

1 Тройные интегралы

Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x,y,z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами V1… Vn В каждой частичной области возбмем произв. точку М с кооорд Mi(i,i,i) составим сумму: f(i,i,i)Vi, кот наз интегральной суммой для ф-ции f(x,y,z). Обозначим за максимальный диаметр частичной области. Если интегральная сумма при  0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x,y,z) по области V И обозначается:

2 Равномерная

сходимость функциональных

последовательностей и рядов.

Признак Вейерштрасса.

Ф-циональную последовательность {fn)x)} x E наз. равномерно сходящейся ф-цией f на м-ж Е, если для >0, сущ номер N, такой, что для т х E и n >N выполняется -во: |fn(x)-f(x)|<. Если м-ж {fn)x)} равномерно сходится на м-ж Е, то она и просто сходится в ф-ции f на сем м-ж. тогда пишут: fn  f.

наз. равномерно сходящимся рядом, если на м-ж Е равномерно сходится последовательность его частичной суммы. , т. ен. равномерная сходимость ряда означает:Sn(x)  f(x) Не всякий сходящийся ряд является равномерно сходящимся, но всякий равномерно сходящийся – есть сходящийся (не, вот это наверное лет 500 выдумывали.)

Т. (Признак Вейерштрасса равномерной сходимости ряда)

Если числовой ряд: (7),

где >=0 сходится и для x E и n = 1,2… если выполняется нер-во |un(x)|<=n(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е.

Док-вы:

Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма.

Зафиксируем произвольное >0 В силу сходимости ряда (7) сущ. номера N, n >N и вып. нерво

Следовательно: |S(x)-Sn(x)| =

Это означает, что Sn(x)  S(x) что означает равномерную сходимость ряда..

№12

1 Замена переменных

в тройном интеграле.

Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcos, y=rsin, z=z (0<=r<=+, 0<= <= 2, -<=z<=+)

Якобиан преобразования:

И поэтому в цилиндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r? , связанными с z,y,z формулами x=rsincos,

y=r sinsin, z=rcos.

(0<=r<=+, 0<= <= 2,

0<= <=2)

Якобиан преобразования:

Т. е. |J|=r2sin.

Итак, в сферических координатах сие будет:

2 Свойства равномерно

сходящихся рядов

Т1 Если ф-ция un(x), где х Е непрерывна в т. х0