Xreferat.com » Рефераты по математике » Лекции по матану (III семестр) переходящие в шпоры

Лекции по матану (III семестр) переходящие в шпоры

dE = Pdx+Pdy

4. В области

Отседова следовает, что условие 3 является необходимым и достаточным условием при котором интегралы 2 рода не зависят от выбора пути интегрирования.

2 Интегральный признак сходимости ряда. Ряд Дирихле.


№21

1 Интегрирование в полных дифференциалах

Пущай ф-ция P(x,y) и Q(x,y) - непрерывны в замкнутой области и выражение P(x,y) + Q(x,y) есть полный дифееренциал некоторой ф-ции F(x,y) в , что равносильно условию: , тогда dF=Pdx+Qdy.

Для интегралов независящих от пути интегрирования часто применяют обозначение:

или

А(x0,y0) , В = (х,у)

поэтому

F(x,y)=

где (х0,у0) – фиксированная точка , (x,y) – произвольная точка , с – const. и дает возможность определить все ф-ции, имеющие в подинтегральном выражении свои полные дифференциалы. Тк. интеграл не зависит от пути интегрирования, за путь инт. удобно взять ломаную звень которой параллельны осям координат. тогда формула преобразуется к виду.

2 Признаки сравнения


№22

1 Сведение 2-ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.

D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)

Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если фция f(x,y) задана на Д и при каждом х [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.


2 Признаки Даламбера и Коши


№23

1 2 ной интеграл

в полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, ) где r = |ОA| расстояние от О до А полярный радиус. = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+, 0<= <=2 .

Зависимость между прямоугольными и полярными координатами: x = rcos , y = rsin .

Якобиан преобразования будет равен:

И формула при переходе примет вид:

2 Знакочередующиеся ряды признак Лейбница


№24

1 Замена переменных

в тройном интеграле

Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcos, y=rsin, z=z (0<=r<=+, 0<= <= 2, -<=z<=+)

Якобиан преобразования:

И поэтому в цилитндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r? , связанными с z,y,z формулами x=rsincos,

y=r sinsin, z=rcos.

(0<=r<=+, 0<= <= 2,

0<= <=2)

Якобиан преобразования:

Т. е. |J|=r2sin.

Итак, в сферических координатах сие будет:

2 Радиус сходимости и интервал сходимости степенного ряда


№25

1 Условия

существования и вычисления криволинейных интегралов

Кривая L наз. гладкой, если ф-ции (t), (t) из определяющих её параметрических уравнений:

(1)

имет на отрезке [a,b] непрерывные производные: ’(t), ’(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра t [a,b] для которых (’(t))2+(’(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ!).

Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x,y), P(x,y), Q(x,y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным:

Отседова жа вытекаает штаа:

В частности, если кривая АВ задана уравнением y = y(x), a<=x<=b , где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:


ну и сумма там тожжа упростица.

ну и наоборот тожжа так будит, если х = х(у)

Если АВ задана в криволинейных координатах <= <= где ф-ция r() непрерывно дифференцируема на отрезке [, ] то имеет место частный случай, где в качестве параметра выступает полярный угол . x = r()cos(),

y= r()sin().

и у второго рода так же.

Прямая L наз кусочно гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую.

все выше сказанное справедливо и для пространственной кривой (с буквой зю).

2 Разложение элементарных ф-ций в ряд Тейлора (Маклорена).

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: