Xreferat.com » Рефераты по математике » Действительные числа. Иррациональные и тригонометрический уравнения

Действительные числа. Иррациональные и тригонометрический уравнения

Содержание

Иррациональные уравнения

Числовая функция. Способы задания функции

Основные свойства функции

Графики функций. Простейшие преобразования графиков функцией

Обратная функция

Степенная функции, её свойства и графики

Показательная функция, её свойства и графики

Показательные неравенства

Логарифмы и их свойства

Логарифмические уравнения

Тригонометрические функции числового аргумента

Функция y sinx ее свойства и график

Обратные тригонометрические функции, их свойства и графики

Частные случаи тригонометрических уравнений

Тригонометрические уравнения

Аксиомы стереометрии и следствия из них

Взаимное расположение двух прямых в пространстве

Скрещивающиеся прямые. Признак скрещивающихся прямых

Теорема о трех перпендикулярах


Алгебра

Действительные числа. Приближение действительных чисел конечными десятичными дробями.

Веще́ственное, или действи́тельное число - математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений  [2] . Если натуральные числа возникли в процессе счета, рациональные - из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.

Абсолютная погрешность и её граница.

Пусть имеется некоторая числовая величина, и числовое значение, которое ей присвоено mathsf{(a)}, считается точным, тогда под погрешностью приближенного значения числовой величины (ошибкой) mathsf{(vartriangle a)}понимают разность между точным и приближенным значением числовой величины:  mathsf{a^{*}-a=vartriangle a}. Погрешность может принимать как положительное так и отрицательное значение. Величина mathsf{(a^{*})}называется известным приближением к точному значению числовой величины - любое число, которое используется вместо точного значения. Простейшей количественной мерой ошибки является абсолютная погрешность. Абсолютной погрешностью приближенного значения mathsf{(a^{*})}называют величину mathsf{vartriangle (a^{*})}, про которую известно, что: mathsf{mid a^{*}-a midle vartriangle(a^{*}).} Относительная погрешность и её граница.

Качество приближения существенным образом зависит от принятых единиц измерения и масштабов величин, поэтому целесообразно соотнести погрешность величины и ее значение, для чего вводится понятие относительной погрешности. Относительной погрешностью приближенного значения называют величину mathsf{delta (a^{*})}, про которую известно, что: mathsf{left| {a^{*}-a over a^{*}} right|= {vartriangle (a^{*}) over left| {a} right|} = delta (a^{*})}. Относительную погрешность часто выражают в процентах. Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерения.

Иррациональные уравнения

Уравнение, в которых под знаком корня содержится переменная, называют иррациональными. При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство. В самом деле, неверное равенство при возведении в квадрат даёт верное равенство 12= (-1) 2, 1=1. Иногда удобнее решать иррациональные уравнения, используя равносильные переходы.

Возведём обе части этого уравнения в квадрат; После преобразований приходим к квадратному уравнению; и подставим.

Комплексные числа. Действия над комплексными числами.

Ко́мпле́ксные чи́сла - расширение множества вещественных чисел, обычно обозначается mathbb{C}. Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y - вещественные числа, i - мнимая единица Комплексные числа образуют алгебраически замкнутое поле - это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней, то есть верна основная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках - электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.

Сравнение a + bi = c + di означает, что a = c и b = d (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

Сложение (a + bi) + (c + di) = (a + c) + (b + d) i.

Вычитание (a + bi) − (c + di) = (ac) + (bd) i.

Умножение

(a+bi)cdot(c+di)=ac+bci+adi+bdi^2=(ac-bd)+(bc+ad)i.

Деление frac{(a+bi)}{(c+di)}=left(frac{ac+bd}{c^2+d^2}right)+left(frac{bc-ad}{c^2+d^2}right)i.

Числовая функция. Способы задания функции

В математике числовая функция - это функция, области определения и значений которой являются подмножествами числовых множеств - как правило, множества действительных чисел R или множества комплексных чисел mathbb{C}.

Словесный: С помощью естественного языка Игрек равно целая часть от икс. Аналитический: С помощью аналитической формулы f (x) = x!

Графический С помощью графика upload.wikimedia//ru/thumb/6/6b/Arctg.png/200px-Arctg.png Фрагмент графика функции y=operatorname{arctg}x.

Табличный: С помощью таблицы значений

x 0 1 2 3 4 5 6 7 8 9
y 1 1 2 3 5 8 13 21 34 55

Основные свойства функции

1) Область определения функции и область значений функции. Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f (x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция. В элементарной математике изучаются функции только на множестве действительных чисел.2) Нуль функции - такое значение аргумента, при котором значение функции равно нулю.3) Промежутки знакопостоянства функции - такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.4) Монотонность функции. Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции. Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.5) Четность (нечетность) функции. Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f (-x) = f (x). График четной функции симметричен относительно оси ординат. Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f (-x) = - f (x). График нечетной функции симметричен относительно начала координат.6) Ограниченная и неограниченная функции. Функция называется ограниченной, если существует такое положительное число M, что |f (x) | ≤ M для всех значений x. Если такого числа не существует, то функция - неограниченная.7) Периодическость функции. Функция f (x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f (x+T) = f (x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

Графики функций. Простейшие преобразования графиков функцией

График функции - множество точек, у которых абcциссы являются допустимыми значениями аргумента x, а ординаты - соответствующими значениями функции y.

calc/images/23.gifПрямая линия - график линейной функции y = ax + b. Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т.0 (y = ax - прямая пропорциональность)

calc/images/24.gifПарабола - график функции квадратного трёхчлена у = ах2 + bх + с. Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax2 + bx +с =0

calc/images/25.gifГипербола - график функции calc/images/30.gif. При а > О расположена в I и III четвертях, при а < 0 - во II и IV. Асимптоты - оси координат. Ось симметрии - прямая у = х (а > 0) или у - х (а < 0).

calc/images/27.gifЛогарифмическая функция y = logax (a > 0)

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов. Тогда функция y = sin x представляется графиком (рис. 19). Эта кривая называется синусоидой.


bymath/studyguide/fun/sec/fun9k.gifГрафик функции y = cos x представлен на рис. 20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на bymath/studyguide/pi.gif/2.

bymath/studyguide/fun/sec/fun9l.gifbymath/studyguide/fun/sec/fun9m.gif

Основные свойства функций. Монотонность, четность, нечетность, периодичность функций.

Область определения функции и область значений функции. Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f (x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.2) Нуль функции - такое значение аргумента, при котором значение функции равно нулю.3) Промежутки знакопостоянства функции - такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.4) Монотонность функции.

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.5) Четность (нечетность) функции. Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f (-x) = f (x). График четной функции симметричен относительно оси ординат. Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f (-x) = - f (x). График нечетной функции симметричен относительно начала координат.6) Ограниченная и неограниченная функции. Функция называется ограниченной, если существует такое положительное число M, что |f (x) | ≤ M для всех значений x. Если такого числа не существует, то функция - неограниченная.7) Периодическость функции. Функция f (x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f (x+T) = f (x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

Периодические функции. Правила нахождения основного периода функции.

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода). Все тригонометрические функции являются периодическими. Являются неверными утверждения относительно суммы периодических функций: Сумма 2 функций с соизмеримыми (даже основными) периодами T1 и T2 является функция с периодом НОК (T1,T2). Сумма 2 непрерывных функций с несоизмеримыми (даже основными) периодами является непериодической функцией. Не существует периодических функций, не равных константе, у которой периодами являются несоизмеримые числа.

Построение графиков степенных функций.

Степенная функция. Это функция: y = axn, где a, n - постоянные. При n = 1 получаем прямую пропорциональность: y = ax; при n = 2 - квадратную параболу; при n = 1 - обратную пропорциональность или гиперболу. Таким образом, эти функции - частные случаи степенной функции. Мы знаем, что нулевая степень любого числа, отличного от нуля, равна 1, cледовательно, при n = 0 степенная функция превращается в постоянную величину: y = a, т. e. её график - прямая линия, параллельная оси Х, исключая начало координат (поясните, пожалуйста, почему?). Все эти случаи (при a = 1) показаны на рис.13 (n bymath/studyguide/geq.gif0) и рис.14 (n < 0). Отрицательные значения x здесь не рассматриваются, так как тогда некоторые функции:

bymath/studyguide/fun/sec/fun9q.gif

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: