Xreferat.com » Рефераты по математике » Плоскости и их проекции

Плоскости и их проекции

1. Проекции плоскостей общего положения

2. Проекции плоскостей уровня

Горизонтальная плоскость

Фронтальная плоскость

Профильная плоскость

3. Проекции проецирующих плоскостей

Горизонтально-проецирующая плоскость

Фронтально-проецирующая плоскость

Профильно-проецирующая плоскость

4. Взаимное расположение двух плоскостей

Параллельные плоскости

Пересекающиеся плоскости

5. Пересечение плоскостей общего положения

6. Взаиморасположение прямой и плоскости

Прямая - в плоскости

Прямая, параллельная плоскости

Прямая пересекает плоскость

7. Пересечение прямой с плоскостью

8. Условие видимости на чертеже

1. Проекции плоскостей общего положения


На комплексном чертеже плоскость может быть задана изображениями тех геометрических элементов, которые вполне определяют положение плоскости в пространстве. Это:

1) три точки, не лежащие на одной прямой (рис. 30);

2) прямая и точка вне прямой;

3) две параллельные прямые (рис. 27);

4) две пересекающиеся прямые (рис. 28).

При решении некоторых задач целесообразно задавать на комплексном чертеже плоскость ее следами (рис. 31).


Плоскости и их проекции

Плоскости и их проекции

Рис. 30

Рис. 31


СЛЕДОМ ПЛОСКОСТИ называется прямая, по которой данная плоскость пересекается с плоскостью проекций.

На рис. 31 изображена плоскость  и ее следы: с — горизонтальный; а — фронтальный; b — профильный. Следы плоскости сливаются с одноименными своими проекциями: след с = с'; след а = а''; след b = b'''. Точки Плоскости и их проекции называются точками схода следов.


2. Проекции плоскостей уровня


Плоскостями уровня называются плоскости, параллельные плоскостям проекций.

Характерная особенность этих плоскостей состоит в том, что элементы, расположенные в этих плоскостях, проецируются на соответствующую плоскость проекций в натуральную величину.

Горизонтальная плоскость

Горизонтальная плоскость (рис. 32) параллельна горизонтальной плоскости проекций.

На двухкартинном комплексном чертеже она изображается одним фронтальным следом, параллельным оси x.

На рис. 32 изображена горизонтальная плоскость  (V).

Фронтальная плоскость

Фронтальная плоскость (рис. 33) параллельна фронтальной плоскости проекций.

На двухкартинном комплексном чертеже она изображается одним фронтальным следом, параллельным оси x.


Плоскости и их проекции Плоскости и их проекции

Рис. 32

Рис. 33

На рис. 33 изображена фронтальная плоскость  ().


Профильная плоскость


Профильная плоскость (рис. 34) параллельна профильной плоскости проекций.

На двухкартинном комплексном чертеже она изображается двумя следами: горизонтальным и фронтальным, перпендикулярными оси x.

На рис. 34 изображена профильная плоскость  (H,V).


Плоскости и их проекции

Рис. 34


3. Проекции проецирующих плоскостей


ПРОЕЦИРУЮЩИМИ называются плоскости, перпендикулярные к плоскостям проекций.

Характерной особенностью таких плоскостей является их собирательное свойство. Оно заключается в следующем: соответствующий след — проекция плоскости — собирает одноименные проекции всех элементов, расположенных в данной плоскости.

Горизонтально-проецирующая плоскость

Горизонтально-проецирующая плоскость (рис. 33) перпендикулярна к горизонтальной плоскости проекций H.


Плоскости и их проекции

Плоскости и их проекции

Рис. 35

Рис. 36


Горизонтальные проекции всех точек, принадлежащих горизонтально-проецирующей плоскости , располагаются на горизонтальном следе — проекции H этой плоскости (рис. 35).

Фронтально-проецирующая плоскость

Фронтально-проецирующая плоскость (рис. 36) перпендикулярна к фронтальной плоскости проекций V.

Фронтальные проекции всех точек, принадлежащих фронтально-проецирующей плоскости , располагаются на фронтальном следе — проекции  этой плоскости (рис. 36).

Профильно-проецирующая плоскость

Профильно-проецирующая плоскость (рис. 37) перпендикулярна к профильной плоскости проекций W.

Плоскости и их проекции

Рис. 37


Профильные проекции всех точек, принадлежащих профильно-проецирующей плоскости , располагаются на профильном следе —проекции этой W плоскости (рис. 37).

6


Похожие рефераты: