Xreferat.com » Рефераты по математике » Фактор-группы. Cмежные классы

Фактор-группы. Cмежные классы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

Математический факультет

Кафедра алгебры и методики преподавания математики


Курсовая работа


СОДЕРЖАНИЕ


Ведение

1.Основные определения и теоремы

2.Смежные классы

2.1. Правые и левые смежные классы

2.2 Двойные смежные классы

3. Нормальные подгруппы и фактор-группы

3.1 Нормальные подгруппы

3.2 Фактор-группы

Заключение

Список использованных источников


ВВЕДЕНИЕ


Первый значительный вклад в теорию групп внес Эварист Галуа (1811–1832) при исследовании вопроса о разрешимости в радикалах алгебраических уравнений. Именно Галуа впервые ввел понятие группы и попытался выяснить, как они устроены. До него группы в виде подстановок корней уравнения возникли также в работах Лагранжа (1771), Роффини (1799) и Абеля (1825).

В 1830–1832 годах Галуа пришел к понятиям нормальной подгруппы, разрешимой группы, простой группы. С тех пор многие ученые математики занимались исследованиями в вопросах связанными с группами, вводили новые понятия, строили свои догадки, формулировали и доказывали теоремы.

Теория групп – один из центральных разделов современной алгебры, в настоящее время активно разрабатываемый в Беларуси в научных школах Минска, Гомеля, Витебска, Новополоцка, Мозыря.

Понятие группы приобретает в настоящее время все большее господство над самыми различными разделами математики и ее приложений и наряду с понятием функции относится к самым фундаментальным понятиям всей математики.

Понятие группы не труднее понятия функции; его можно освоить на самых первых ступенях математического образования, тем более что сделать это можно на материале элементарной математики. Вместе с тем знакомство с этой теорией кажется одним из самых естественных способов ознакомления с современной математикой вообще.

Моя цель состоит в том, чтобы разобраться с начальными понятиями, связанными с группами: фактор-группы, смежные классы, доказать наиболее важные теоремы, следствия, выделить некоторые свойства.


1.ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ТЕОРЕМЫ


Рассмотрим некоторое непустое множество G, на котором определена бинарная алгебраическая операция.

ОПРЕДЕЛЕНИЕ 1.1. Пара (G,*) называется группой, если:

1) операция ассоциативна, т.е. для любых a, b, c ОG выполняется


a*(b*c)=(a*b)*c;


2) в G существует нейтральный элемент относительно, т.е. для любого a О G найдется такой элемент e ,что выполняется


a*e=e*a=a


3) для любого элемента G существует симметричный элемент относительно, т.е. для любых a, bО G выполняется


a*b=b*a=e;


ОПРЕДЕЛЕНИЕ 1.2. Подмножество H группы G называется подгруппой, если H-группа относительно той же операции, которая определена на G.

ОПРЕДЕЛЕНИЕ 1.3. Зафиксируем в группе G элемент a. Пересечение всех подгрупп группы G, содержащих элемент а, называется циклической подгруппой, порожденной элементом а, и обозначается бас.

ОПРЕДЕЛЕНИЕ 1.4. Если G совпадает с одной из своих циклических подгрупп, то G называют циклической группой.


ТЕОРЕМА 1.1. Пусть элемент аОG имеет конечный порядок k.


Тогда


бас ={e, a, aФактор-группы. Cмежные классы, … , aФактор-группы. Cмежные классы}


Кроме того, аФактор-группы. Cмежные классы= e в точности тогда, когда k делит m.


ТЕОРЕМА 1.2. Все подгруппы бесконечной циклической группы G = бас исчерпываются единичной подгруппой E={e} и бесконечными подгруппами б аФактор-группы. Cмежные классыс для каждого натурального m.

ТЕОРЕМА 1.3.Все подгруппы конечной циклической группы бас порядка n исчерпываются циклическими подгруппами б аФактор-группы. Cмежные классыс порядка n/m для каждого натурального m, делящего n.

ТЕОРЕМА 1.4. Непустое подмножество H группы G будет подгруппой тогда и только тогда, когда hФактор-группы. Cмежные классыhФактор-группы. Cмежные классыФактор-группы. Cмежные классыH и hФактор-группы. Cмежные классыФактор-группы. Cмежные классыH.


2. СМЕЖНЫЕ КЛАССЫ


2.1 Правые и левые смежные классы


Пусть G – группа, H – ее подгруппа и gОG.

ОПРЕДЕЛЕНИЕ 2.1.1. Правым смежным классом группы G по подгруппе H называется множество Hg= {hg | hОH} всех элементов группы G вида hg , где h “пробегает” все элементы подгруппы H.

Аналогично определяется левый смежный класс gH={gh | hОH}.

ЛЕММА 2.1.1. Пусть G – группа, H – подгруппа. Тогда справедливы утверждения:

1) H=He;

2) gОHg для каждого gОG;

3) если a О H, то Ha=H; если bО Ha , то Hb=Ha;

4) Ha=Hb тогда и только тогда, когда abФактор-группы. Cмежные классыОH;

5) два смежных класса либо совпадают, либо их пересечение пусто;

6) если H – конечная подгруппа, то | Hg | = | H | для всех gОG.

Доказательство

Первые три свойства вытекают из определения правого смежного класса


(4) Если Ha = Hb, то ea = hb, hОH и abФактор-группы. Cмежные классы= hОH. Обратно, если abФактор-группы. Cмежные классыОH, то aОHb и Ha=Hb по утверждению 3.

(5) Пусть Ha З Hb ≠Ж и c О Ha З Hb. Тогда c=Фактор-группы. Cмежные классыa=Фактор-группы. Cмежные классыb и abФактор-группы. Cмежные классы=Фактор-группы. Cмежные классыОH. Теперь Ha=Hb по утверждению 4).

(6) Для каждого gОG отображение φ: h→hg есть биекция множеств H и Hg. Поэтому | H | = | Hg |

Ч.т.д.

Из свойств 2) и 5) следует, что каждый элемент группы G содержится точно в одном правом смежном классе по подгруппе H. Это свойство позволяет ввести следующее определение.

ОПРЕДЕЛЕНИЕ 2.1.2. Пусть H подгруппа группы G. Подмножество T элементов группы G называется правой трансверсалью подгруппы H в группе G , если T содержит точно один элемент из каждого правого смежного класса группы G по подгруппе H .Итак, если T = {Фактор-группы. Cмежные классы | aОI} –правая трансверсаль подгруппы H в группе G, то G = Фактор-группы. Cмежные классы, HФактор-группы. Cмежные классыЖ при Фактор-группы. Cмежные классы.

Таким образом, справедлива теорема.


ТЕОРЕМА 2.1.1. Если H – подгруппа группы G, то G является подгруппой непересекающихся правых смежных классов по подгруппе H.

Если G – конечная группа, то число различных правых смежных классов по подгруппе H также будет конечно, оно называется индексом подгруппы H в группе G и обозначается через |G : H|. Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в правой трансверсали T подгруппы H, т.е.


|G : H|=|T|=|G|/|H|


ТЕОРЕМА 2.1.2. (Лагранжа) Если H-подгруппа конечной группы G, то | G | = | H || G : H |. В частности, порядок конечной группы делится на порядок каждой своей подгруппы.

Доказательство.

Пусть индекс H в группе G равен n . По теореме 2.1.1. имеем разложение


G=HgФактор-группы. Cмежные классыФактор-группы. Cмежные классыHgФактор-группы. Cмежные классыФактор-группы. Cмежные классыHgФактор-группы. Cмежные классы, HgФактор-группы. Cмежные классыHgФактор-группы. Cмежные классыЖ при i ≠ j.

Так как


| HgФактор-группы. Cмежные классы| = |H| для всех i, то | G | = | H || G : H |


СЛЕДСТВИЕ 2.1.1. Порядок каждого элемента конечной группы делит порядок всей группы.

Доказательство

Порядок элемента a совпадает с порядком циклической подгруппы бас, порожденный этим элементом, см. теорему 1.1. Поэтому, | б ас | = | a | делит | G |.

Аналогично определяется левая трансверсаль подгруппы H в группе G. Если L={ lФактор-группы. Cмежные классы | aО J } – левая трансверсаль подгруппы H в группе G, то


G=Фактор-группы. Cмежные классыlФактор-группы. Cмежные классыH, lФактор-группы. Cмежные классыH З lФактор-группы. Cмежные классыH=Ж при Фактор-группы. Cмежные классы.


Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в левой трансверсали L подгруппы H, т.е. | G : H |=| L |. Для левой трансверсали справедлив аналог теоремы 2.1.1 .Поэтому из теоремы Лагранжа имеем

СЛЕДСТВИЕ 2.1.2. Число левых и число правых смежных классов конечной группы G по подгруппе H совпадают.

ТЕОРЕМА 2.1.3. В группе простого порядка нет неотрицательных подгрупп. В частности, группа простого порядка циклическая.

Доказательство.

Пусть G – конечная группа простого порядка p. Если H – подгруппа группы G, то по теореме Лагранжа | H | делит | G |. Поэтому либо | H |=1 и H – единичная подгруппа, либо | H |= p и H совпадает с группой G. Выберем неединичный элемент а в группе G и рассмотрим циклическую подгруппу бас, порожденную этим элементом. Так как a ≠ e ,то б ас ≠ E, поэтому бас = G и G – циклическая группа.


ТЕОРЕМА 2.1.4. Пусть H ≤ K ≤ G и G – конечная группа. Если T – правая трансверсаль подгруппы H в группе K, а S – правая трансверсаль подгруппы K в группе G, то TS – правая трансверсаль подгруппы H в группе G. В частности, | G : H | = | G : K || K : H |.

Доказательство

Пусть


T={tФактор-группы. Cмежные классы, … ,tФактор-группы. Cмежные классы}, S={sФактор-группы. Cмежные классы, … , sФактор-группы. Cмежные классы}


Тогда


K=HtФактор-группы. Cмежные классыФактор-группы. Cмежные классы. . . Фактор-группы. Cмежные классыHtФактор-группы. Cмежные классы, HtФактор-группы. Cмежные классыHtФактор-группы. Cмежные классыЖ, i ≠j;

G=KsФактор-группы. Cмежные классыФактор-группы. Cмежные классы. . . Фактор-группы. Cмежные классыKsФактор-группы. Cмежные классы, KsФактор-группы. Cмежные классыKsФактор-группы. Cмежные классыЖ, i ≠j.


Теперь


G =( HtФактор-группы. Cмежные классыФактор-группы. Cмежные классы. . . Фактор-группы. Cмежные классыHtФактор-группы. Cмежные классы)sФактор-группы. Cмежные классыФактор-группы. Cмежные классы. . . Фактор-группы. Cмежные классы ( HtФактор-группы. Cмежные классыФактор-группы. Cмежные классы. . . Фактор-группы. Cмежные классы HtФактор-группы. Cмежные классы)sФактор-группы. Cмежные классы. (2.1.1)


Предположим, что HtФактор-группы. Cмежные классыsФактор-группы. Cмежные классыHtФактор-группы. Cмежные классыsФактор-группы. Cмежные классы для некоторых натуральных a,b,c и d. Тогда


tФактор-группы. Cмежные классыsФактор-группы. Cмежные классы(tФактор-группы. Cмежные классыsФактор-группы. Cмежные классы)Фактор-группы. Cмежные классы = tФактор-группы. Cмежные классыsФактор-группы. Cмежные классыsФактор-группы. Cмежные классыtФактор-группы. Cмежные классыОH ≤ K,


поэтому

sФактор-группы. Cмежные классыsФактор-группы. Cмежные классыО tФактор-группы. Cмежные классыKtФактор-группы. Cмежные классы = K, K sФактор-группы. Cмежные классы=KsФактор-группы. Cмежные классы

Но sФактор-группы. Cмежные классы и sФактор-группы. Cмежные классы– элементы из правой трансверсали подгруппы K в группе G, поэтому sФактор-группы. Cмежные классы= sФактор-группы. Cмежные классы и b = d. Теперь


tФактор-группы. Cмежные классыsФактор-группы. Cмежные классы(tФактор-группы. Cмежные классыsФактор-группы. Cмежные классы)Фактор-группы. Cмежные классы = tФактор-группы. Cмежные классыtФактор-группы. Cмежные классыОH, H tФактор-группы. Cмежные классы=HtФактор-группы. Cмежные классы


и a = c. Таким образом, формула (2.1.1.) является разложением группы G по подгруппе H и TS – правая трансверсаль подгруппы H в группе G. Так как индекс подгруппы совпадает с числом элементов в правой трансверсали этой подгруппы, то


|G : H |=| TS |=| T | | S |=| K : H || G : K |


Отметим, что теорема Лагранжа вытекает из теоремы 2.1.4. при H=E.


2.3. Двойные смежные классы


Пусть H и K – подгруппы группы G и g О G. Множество


HgK ={ hgk | h О H, k О K}


называется двойным смежным классом группы G по подгруппам H и K

ЛЕММА 2.3.1. Пусть H и K –подгруппы группы G. Тогда справедливы следующие утверждения:

1) Каждый элемент gО G содержится в единственном двойном смежном классе HgK;

2) Два двойных смежных класса по H и K либо совпадают, либо их пересечение пусто;

3) Группа G есть объединение непересекающихся двойных смежных классов по подгруппам H и K;

4) Каждый двойной смежный класс по H и K есть объединение правых смежных классов по H и левых смежных классов по K;

5) Если группа G конечна, то двойной смежный класс HgK содержит

| K: HФактор-группы. Cмежные классыФактор-группы. Cмежные классы K | правых смежных классов по H и | H : H Фактор-группы. Cмежные классыKФактор-группы. Cмежные классы| левых смежных классов по К.

Доказательство.

(1)Так как каждая подгруппа содержит единичный элемент, то


g=ege О HgK


Допустим, что gОHxK. Тогда g=hxk для некоторых hОH, kОK и


HgK=H(hxk)K=HxK.


(2) и (3) следуют из (1)

(4)Так как


HgK=Фактор-группы. Cмежные классы =Фактор-группы. Cмежные классы,


то утверждение (4) доказано.

Подсчитаем число правых смежных классов в разложении HgK=Фактор-группы. Cмежные классы по подгруппе H. Допустим, что HgkФактор-группы. Cмежные классы=HgkФактор-группы. Cмежные классы. Тогда


Hg kФактор-группы. Cмежные классыkФактор-группы. Cмежные классы = Hg и kФактор-группы. Cмежные классыkФактор-группы. Cмежные классы О gФактор-группы. Cмежные классыHgФактор-группы. Cмежные классыK=HФактор-группы. Cмежные классыФактор-группы. Cмежные классыK

Справедливо и обратное, т.е. если kФактор-группы. Cмежные классыkФактор-группы. Cмежные классыО HФактор-группы. Cмежные классыФактор-группы. Cмежные классыK, то


kФактор-группы. Cмежные классыkФактор-группы. Cмежные классы

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: