Xreferat.com » Рефераты по математике » Высшая математика

Высшая математика

Основные теоремы и определения

Определение. Сумма членов бесконечной числовой последовательности Высшая математика называется числовым рядом.

Высшая математика

При этом числа Высшая математика будем называть членами ряда, а un – общим членом ряда.

Определение. Суммы Высшая математика, n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

Определение. Ряд Высшая математика называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Высшая математика

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда Высшая математика и Высшая математика, где С – постоянное число.

Теорема. Если ряд Высшая математикасходится и его сумма равна S, то ряд Высшая математикатоже сходится, и его сумма равна СS. (C ¹ 0)

3) Рассмотрим два ряда Высшая математикаи Высшая математика. Суммой или разностью этих рядов будет называться ряд Высшая математика, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды Высшая математикаи Высшая математикасходятся и их суммы равны соответственно S и s, то ряд Высшая математика тоже сходится и его сумма равна S + s.

Высшая математика

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность Высшая математикабыла сходящейся, необходимо и достаточно, чтобы для любого Высшая математика существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

Высшая математика.

1.3 Определение. Ряд Высшая математиканазывается равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда Высшая математиканеобходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

Высшая математика

выполнялось бы для всех х на отрезке [a,b].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд Высшая математикасходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :

Высшая математика

т.е. имеет место неравенство:

Высшая математика.

Еще говорят, что в этом случае функциональный ряд Высшая математика мажорируется числовым рядом Высшая математика.

ряд Высшая математика называется положительным, если Un≥0, для всех n ? N

Интегральный признак Коши.

Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … = Высшая математика и несобственный интеграл Высшая математика одинаковы в смысле сходимости.

Пример. Ряд Высшая математика сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл Высшая математика сходится при a>1 и расходится a£1. Ряд Высшая математика называется общегармоническим рядом.

Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и Высшая математика то интегралы Высшая математика и Высшая математика ведут себя одинаково в смысле сходимости.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

Высшая математика.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд Высшая математика

Применяем признак Даламбера:

Высшая математика.

Получаем, что этот ряд сходится при Высшая математикаи расходится при Высшая математика.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1: Высшая математика ряд сходится по признаку Лейбница (см. Признак Лейбница. ).

При х = -1: Высшая математика ряд расходится (гармонический ряд).

1 теорема Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд Высшая математика сходится при x = x1 , то он сходится и притом абсолютно для всех Высшая математика.

Доказательство. По условию теоремы, так как члены ряда ограничены, то

Высшая математика

где k- некоторое постоянное число. Справедливо следующее неравенство:

Высшая математика

Из этого неравенства видно, что при x<x1 численные величины членов нашего ряда будут меньше ( во всяком случае не больше ) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии Высшая математика по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд Высшая математика сходится, а значит ряд Высшая математика сходится абсолютно.

Таким образом, если степенной ряд Высшая математикасходится в точке х1, то он абсолютно сходится в любой точке интервала длины 2Высшая математика с центром в точке х = 0.

Следствие. Если при х = х1 ряд расходится, то он расходится для всех Высшая математика.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что Высшая математика ряд абсолютно сходится, а при всех Высшая математикаряд расходится. При этом число R называется радиусом сходимости. Интервал (-R, R) называется интервалом сходимости.

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Высшая математика

Определение. Тригонометрическим рядом называется ряд вида:

Высшая математика

или, короче, Высшая математика

Действительные числа ai, bi называются коэффициентами тригонометрического ряда.

Определение. Тригонометрическим рядом называется ряд вида:

Высшая математика

или, короче, Высшая математика

3,3

2 Теорема Абеля. Если степенной ряд Высшая математика сходится для положительного значения х=х1 , то он сходится равномерно в любом промежутке внутри Высшая математика.

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда Высшая математика и Высшая математика при un, vn ³ 0.

Теорема. Если un £ vn при любом n, то из сходимости ряда Высшая математикаследует сходимость ряда Высшая математика, а из расходимости ряда Высшая математикаследует расходимость ряда Высшая математика.

Доказательство. Обозначим через Sn и sn частные суммы рядов Высшая математика и Высшая математика. Т.к. по условию теоремы ряд Высшая математикасходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда Высшая математикатоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд Высшая математика

Т.к. Высшая математика, а гармонический ряд Высшая математика расходится, то расходится и ряд Высшая математика.

Пример. Исследовать на сходимость ряд Высшая математика

Т.к. Высшая математика, а ряд Высшая математика сходится ( как убывающая геометрическая прогрессия), то ряд Высшая математика тоже сходится.

Также используется следующий признак сходимости:

Теорема. Если Высшая математика и существует предел Высшая математика, где h – число, отличное от нуля, то ряды Высшая математика и Высшая математикаведут одинаково в смысле сходимости.

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Возможны различные способы разложения функции в степенной ряд. Такие способы как разложение при помощи рядов Тейлора и Маклорена были рассмотрены ранее. (См. Формула Тейлора. )

Существует также способ разложения в степенной ряд при помощи алгебраического деления. Это – самый простой способ разложения, однако, пригоден он только для разложения в ряд алгебраических дробей

Рассмотрим способ разложения функции в ряд при помощи интегрирования.

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

Находим дифференциал функции Высшая математика и интегрируем его в пределах от 0 до х.

Высшая математика

Высшая математика

2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.

Высшая математика

3) Теорема о почленном дифференцировании ряда.

Если члены ряда Высшая математика сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных Высшая математикасходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

Высшая математика

На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

На практике часто применяется разложение функций в степенной ряд.

Ряд Тейлора.

(Пьер Альфонс Лоран (1813 – 1854) – французский математик)

Функция f(z), аналитическая в круге Высшая математика, разлагается в сходящийся к ней степенной ряд по степеням (z – z0).

Коэффициенты ряда вычисляются по формулам:

Высшая математика

Высшая математика

Степенной ряд с коэффициентами такого вида называется рядом Тейлора.

Правая часть линейного неоднородного дифференциального уравнения имеет вид:

 Высшая математика

где Высшая математика- многочлен степени m.

Тогда частное решение ищется в виде:

 Высшая математика

Здесь Q(x)- многочлен той же степени, что и P(x), но с неопределенными коэффициентами, а r – число, показывающее сколько раз число a является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения.

Правая часть линейного неоднородного дифференциального уравнения имеет вид:

 Высшая математика

Здесь Р1(х) и Р2(х) – многочлены степени m1 и m2 соответственно.

Тогда частное решение неоднородного уравнения будет иметь вид:

 Высшая математика

где число r показывает сколько раз число Высшая математика является корнем характеристического уравнения для соответствующего однородного уравнения, а Q1(x) и Q2(x) – многочлены степени не выше m, где m- большая из степеней m1 и m2.

Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию.

Т.е. если уравнение имеет вид: Высшая математика, то частное решение этого уравнения будет Высшая математикагде у1 и у2 – частные решения вспомогательных уравнений

Высшая математика и Высшая математика

Предельный признак Даламбера.

Предельный признак Даламбера является следствием из

Похожие рефераты: