Xreferat.com » Рефераты по математике » Рациональные уравнения и неравенства

Рациональные уравнения и неравенства

Содержание

I. Рациональные уравнения.

Линейные уравнения. Системы линейных уравнений. Квадратные уравнения и уравнения, сводящиеся к ним. Возвратные уравнения. Формула Виета для многочленов высших степеней. Системы уравнений второй степени. Метод введения новых неизвестных при решении уравнений и систем уравнений. Однородные уравнения. Решение симметрических систем уравнений. Уравнения и системы уравнений с параметрами. Графический метод решения систем нелинейных уравнений. Уравнения, содержащие знак модуля. Основные методы решения рациональных уравнений

II. Рациональные неравенства.

Свойства равносильных неравенств. Алгебраические неравенства. Метод интервалов. Дробно-рациональные неравенства. Неравенства, содержащие неизвестное под знаком абсолютной величины. Неравенства с параметрами. Системы рациональных неравенств. Графическое решение неравенств.

III. Проверочный тест.

Рациональные уравнения

Функция вида

P(x) = a0xn + a1xn – 1 + a2xn – 2 + … + an – 1x + an,

где n — натуральное, a0, a1,…, an — некоторые действительные числа, называется целой рациональной функцией.

Уравнение вида P(x) = 0, где P(x) — целая рациональная функция, называется целым рациональным уравнением.

Уравнение вида

P1(x) / Q1(x) + P2(x) / Q2(x) + … + Pm(x) / Qm(x) = 0,

где P1(x), P2(x), … ,Pm(x), Q1(x), Q2(x), …, Qm(x) — целые рациональные функции, называется рациональным уравнением.

Решение рационального уравнения P (x) / Q (x) = 0, где P (x) и Q (x) — многочлены (Q (x) ¹ 0), сводится к решению уравнения P (x) = 0 и проверке того, что корни удовлетворяют условию Q (x) ¹ 0.

Линейные уравнения.

Уравнения вида ax+b=0, где a и b — некоторые постоянные, называется линейным уравнением.

Если a¹ 0, то линейное уравнение имеет единственный корень: x = -b /a.

Если a=0; b¹ 0, то линейное уравнение решений не имеет.

Если a=0; b=0, то, переписав исходное уравнение в виде ax = -b, легко видеть, что любое x является решением линейного уравнения.

Уравнение прямой имеет вид: y = ax + b.

Если прямая проходит через точку с координатами X0 и Y0, то эти координаты удовлетворяют уравнению прямой, т. е. Y0 = aX0 + b.

Пример 1.1. Решить уравнение

2x – 3 + 4(x – 1) = 5.

Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x – 3 + 4x – 4 = 5, 2x + 4x = 5 + 4 + 3,

6x = 12, x = 2.

Ответ: 2.

Пример 1.2. Решить уравнение

2x – 3 + 2(x – 1) = 4(x – 1) – 7.

Решение. 2x + 2x – 4x = 3 +2 – 4 – 7, 0x = – 6.

Ответ: Æ .

Пример 1.3. Решить уравнение.

2x + 3 – 6(x – 1) = 4(x – 1) + 5.

Решение. 2x – 6x + 3 + 6 = 4 – 4x + 5,

– 4x + 9 = 9 – 4x,

-4x + 4x = 9 – 9,

0x = 0.

Ответ: Любое число.

Системы линейных уравнений.

Уравнение вида

a1x1 + a2x2 + … + anxn = b,

где a1, b1, … ,an, b —некоторые постоянные, называется линейным уравнением с n неизвестными x1, x2, …, xn.

Система уравнений называется линейной, если все уравнения, входящие в систему, являются линейными. Если система из n неизвестных, то возможны следующие три случая:

система не имеет решений; система имеет ровно одно решение; система имеет бесконечно много решений.

Пример 2.4. решить систему уравнений

Рациональные уравнения и неравенства

Решение. Решить систему линейных уравнений можно способом подстановки, который состоит в том, что какого-либо уравнения системы выражают одно неизвестное через другие неизвестные, а затем подставляют значение этого неизвестного в остальные уравнения.

Из первого уравнения выражаем: x= (8 – 3y) / 2. Подставляем это выражение во второе уравнение и получаем систему уравнений

Рациональные уравнения и неравенства

Из второго уравнения получаем y = 2. С учётом этого из первого уравнения x = 1.

Ответ: (1; 2).

Пример 2.5. Решить систему уравнений

Рациональные уравнения и неравенства

Решение. Система не имеет решений, так как два уравнения системы не могут удовлетворяться одновременно (из первого уравнения x + y = 3, а из второго x + y = 3,5).

Ответ: Решений нет.

Пример 2.6. решить систему уравнений

Рациональные уравнения и неравенства

Решение. Система имеет бесконечно много решений, так как второе уравнение получается из первого путём умножения на 2 (т.е. фактически есть всего одно уравнение с двумя неизвестными).

Ответ: Бесконечно много решений.

Пример 2.7. решить систему уравнений

Рациональные уравнения и неравенства

Решение. При решении систем линейных уравнений удобно пользоваться методом Гаусса, который состоит в преобразовании системы к треугольному виду.

Умножаем первое уравнение системы на – 2 и, складывая полученный результат со вторым уравнением, получаем – 3y + 6z = – 3. Это уравнение можно переписать в виде y – 2z = 1. Складывая первое уравнение с третьим, получаем 7y = 7, или y = 1.

Таким образом, система приобрела треугольный вид

Рациональные уравнения и неравенства

Подставляя y = 1 во второе уравнение, находим z = 0. Подставляя y =1 и z = 0 в первое уравнение, находим x = 1.

Ответ: (1; 1; 0).

Пример 2.8. при каких значениях параметра a система уравнений

Рациональные уравнения и неравенства

имеет бесконечно много решений?

Решение. Из первого уравнения выражаем x:

x = – (a / 2)y + a / 2 +1.

Подставляя это выражение во второе уравнение, получаем

(a + 1)( – (a / 2)y + a / 2 +1) + 2ay = 2a + 4.

Далее умножим обе части уравнения на 2 и упростим его:

(a + 1)(a + 2 – ay) + 4ay = 4a + 8,

4ay – a(a + 1)y = 4(a + 2) – (a + 1)(a + 2),

ya(4 – a – 1 ) = (a + 2)(4 – a – 1),

ya(3 – a) = (a + 2)(3 – a).

Анализируя последнее уравнение, отметим, что при a = 3 оно имеет вид 0y = 0, т.е. оно удовлетворяется при любых значениях y.

Ответ: 3.

Квадратные уравнения и уравнения, сводящиеся к ним.

Уравнение вида ax2 + bx + c = 0, где a, b и c — некоторые числа (a¹ 0);

x — переменная, называется квадратным уравнением.

Формула решения квадратного уравнения.

Сначала разделим обе части уравнения ax2 + bx + c = 0 на a — от этого его корни не изменятся. Для решения получившегося уравнения

x2 + (b / a)x + (c / a) = 0

выделим в левой части полный квадрат

x2 + (b / a) + (c / a) = (x2 + 2(b / 2a)x + (b / 2a)2) – (b / 2a)2 + (c / a) =

= (x + (b / 2a))2 – (b2) / (4a2) + (c / a) = (x + (b / 2a))2 – ((b2 – 4ac) / (4a2)).

Для краткости обозначим выражение (b2 – 4ac) через D. Тогда полученное тождество примет вид

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2)).

Возможны три случая:

если число D положительно (D > 0), то в этом случае можно извлечь из D квадратный корень и записать D в виде D = (Ö D)2. Тогда

D / (4a2) = (Ö D)2 / (2a)2 = (Ö D / 2a)2, потому тождество принимает вид

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (Ö D / 2a)2.

По формуле разности квадратов выводим отсюда:

x2 + (b / a)x + (c / a) = (x + (b / 2a) – (Ö D / 2a))(x + (b / 2a) + (Ö D / 2a)) =

= (x – (( -b + Ö D) / 2a)) (x – (( – b – Ö D) / 2a)).

Теорема: Если выполняется тождество

ax2 + bx + c = a(x – x1)(x – x2),

то квадратное уравнение ax2 + bx + c = 0 при X1 ¹ X2 имеет два корня X1 и X2, а при X1 = X2 — лишь один корень X1.

В силу этой теоремы из, выведенного выше, тождества следует, что уравнение

x2 + (b / a)x + (c / a) = 0,

а тем самым и уравнение ax2 + bx + c = 0, имеет два корня:

X1=(-b + Ö D) / 2a; X2= (-b - Ö D) / 2a.

Таким образом x2 + (b / a)x + (c / a) = (x – x1)(x – x2).

Обычно эти корни записывают одной формулой:

где b2 – 4ac = D.

если число D равно нулю (D = 0), то тождество

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2))

принимает вид x2 + (b / a)x + (c / a) = (x + (b / 2a))2.

Отсюда следует, что при D = 0 уравнение ax2 + bx + c = 0 имеет один корень кратности 2: X1 = – b / 2a

3) Если число D отрицательно (D < 0), то – D > 0, и потому выражение

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2))

является суммой двух слагаемых, одно из которых неотрицательно, а другое положительно. Такая сумма не может равняться нулю, поэтому уравнение

x2 + (b / a)x + (c / a) = 0

не имеет действительных корней. Не имеет их и уравнение ax2 + bx + c = 0.

Таким образом, для решения квадратного уравнения следует вычислить дискриминант

D = b2 – 4ac.

Если D = 0, то квадратное уравнение имеет единственное решение:

X=-b / (2a).

Если D > 0, то квадратное уравнение имеет два корня:

X1=(-b + Ö D) / (2a); X2= (-b - Ö D) / (2a).

Если D < 0, то квадратное уравнение не имеет корней.

Если один из коэффициентов b или c равен нулю, то квадратное уравнение можно решать, не вычисляя дискриминанта:

b = 0; c ¹ 0; c / a 0;

X1 = (- 5 + Ö 33) / 4; X2 = (- 5 -Ö 33) / 4.

Ответ: X1 = (- 5 + Ö 33) / 4; X2 = (- 5 -Ö 33) / 4.

Пример 3.10. Решить уравнение x3 – 5x2 + 6x = 0

Решение. Разложим левую часть уравнения на множители x(x2 – 5x + 6) = 0,

отсюда x = 0 или x2 – 5x + 6 = 0.

Решая квадратное уравнение, получаем X1 = 2 , X2 = 3.

Ответ: 0; 2; 3.

Пример 3.11.

x3 – 3x + 2 = 0.

Решение. Перепишем уравнение, записав –3x = – x – 2x, x3 – x – 2x + 2 = 0, а теперь группируем

x(x2 – 1) – 2(x – 1) = 0,

(x – 1)(x(x + 1) – 2) = 0,

x – 1 = 0, x1 = 1,

x2 + x – 2 = 0, x2 = – 2, x3 = 1.

Ответ: x1 = x3 = 1, x2 = – 2.

Пример 3.12. Решить уравнение

Рациональные уравнения и неравенства

Решение. Найдём область допустимых значений x:

X + 2 ¹ 0; x – 6 ¹ 0; 2x – 7 ¹ 0 или x ¹ – 2; x ¹ 6; x ¹ 3,5.

Приводим уравнение к виду (7x – 14)(x2 – 7x + 12) = (14 – 4x)(x2 – 4x – 12), раскрываем скобки.

7x3 – 49x2 + 84x – 14x2 + 98x – 168 + 4x3 – 16x2 – 48x – 14x2 + 56x + 168 = 0,

11x3 – 93x2 + 190x = 0,

x(11x2 – 93x + 190) = 0,

x1 = 0

11x2 – 93x + 190 = 0,

Рациональные уравнения и неравенства

т.е. x1 = 5; x2 = 38

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: