Xreferat.com » Рефераты по математике » Рациональные уравнения и неравенства

Рациональные уравнения и неравенства

/>£ х £ -Ѕ. – Ѕ £ х £ 1. Имеем неравенство х2 – х – 2 £ 0. Его решение –1 £ х £ 2. Следовательно, весь отрезок –Ѕ £ x £ 1удовлетворяет неравенству . 1 < x < 2. Получаем х2 – 5х + 6 ³ 0; х £ 2 или х ³ 3. Вновь подходит весь интервал. х ³ 2. Неравенство то же, что и в случае 2. Подходит лишь х = 2.

Ответ:Рациональные уравнения и неравенства £ х £ 2.

Пример: Решить неравенство.

½ ½ х3 + х - 3½ - 5½ £ х3 – х + 8.

Решение. Решим это неравенство не стандартным образом.

Рациональные уравнения и неравенства

Неравенства с параметрами.

Неравенства с параметрами являются наиболее трудными задачами курса элементарной математики. Это объясняется тем, что их решения следует получать при всех допустимых значениях входящих в них параметров.

Пример: Для всех значений а решить неравенство

aх > 1/x.

Решение: Запишем неравенство в виде

Рациональные уравнения и неравенства

тогда исходное неравенство эквивалентно двум системам неравенств:

ax2 – 1 > 0,ax2 – 1 < 0,

x > 0; x < 0.

Рассмотрим первую систему. Первое неравенство запишем в виде:

ax2 > 1.

При а > 0 оно эквивалентно неравенству х2 > 1/a, множество решений которого х < -1/  и x > 1/ . В этом случае решения первой системы: хÎ (1/ ; ¥ ). При а £ 0 левая часть неравенства ах2 –1 > 0 отрицательна при любом х и неравенство решений не имеет, а следовательно, не имеет решений и вся система неравенств.

Рассмотрим вторую систему. При а > 0 решениями неравенства ах2 – 1 0 и а £ 0 и для каждого из них построим графики функций, стоящих в левой и правой частях исходного неравенства. Заштрихованные промежутки оси Ох представляют собой решение неравенства в рассматриваемых случаях.

Графическая иллюстрация облегчает решение уравнений и неравенств с параметрами.

Ответ: Если а £ 0, то хÎ (-¥ ; 0); если а > 0, то хÎ (-1/ ; 0)È (1/ ; ¥ ).

Пример: Решить неравенство:

   Рациональные уравнения и неравенства

Решение: Преобразуем данное неравенство: 3m2х + 3 – 2mx2 – 6 < m + 9x; mx2 – 9x < m + 3; (m – 3)(m + 3)x < m + 3. Далее находим решение неравенства при различных значения параметра m:

Пусть (m – 3)(m + 3) > 0, т.е. m < -3 или m > 3. Тогда неравенство имеет решение х < 1/(m – 3). Пусть (m – 3)(m + 3) < 0, т.е. –3 < m < 3. Тогда неравенство имеет решение х > 1/(m – 3). Пусть (m – 3)(m + 3) = 0, т.е. m = 3 или m = -3. Тогда если m = 3, то неравенство примет вид 0× х < 6 и, значит выполняется при любом хÎ R. Если же m = -3, то неравенство примет вид 0× х < 0 и, следовательно, не имеет решении.

Пример: Для каждого неотрицательного значения параметра а решить неравенство

4а3х4 + 4а2х2 + 32х + а + 8 ³ 0.

Решение. Левая часть неравенства представляет собой многочлен как относительно х, так и относительно параметра а. Степени соответственно равны 4 и 3. Однако если умножить многочлен на а, а затем сделать замену y = ax, то в новом многочлене максимальная степень параметра а будет равна 2. Случай а = 0 дает нам ответ х ³ - ј. Будем теперь считать, что а > 0. Умножив обе части неравенства на а и сделав замену y = ax, получим

4y4 + 4ay2 + 32y + a2 + 8a ³ 0.

Левая часть представляет собой квадратный трехчлен относительно а:

a2 + (4y2 + 8)a + 4y2 + 32y ³ 0,

јD = (2y2 + 4) 2 – 4y2 – 32y = 16(y – 1) 2.

Раскладывая левую часть неравенства на множители, получим

(а + 2y2 + 4y)(a + 2y2 – 4y + 8) ³ 0,

или

(2y2 + 4y + a)(2y2 – 4y + 8 + a) ³ 0.

Второй множитель положителен при всех y, если а > 0. Приходим к неравенству 2y2 + 4y + a ³ 0, откуда, если 0

Ответ: Если а = 0, то х ³ - ј; если 0

Пример: Решить систему неравенств

Рациональные уравнения и неравенства

Решение: Поскольку решением первого неравенства является 1 £ х £ 2, то задача сводится (при а ¹ 0) к выяснению расположения корней квадратного трехчлена f(x) = ах2 – 2(а + 1)х + а –1 относительно отрезка [1; 2]. Имеем

јD = (а + 1) 2 – а(а – 1) = 3а + 1, f(1) = -3, f(2) = а – 5.

Рациональные уравнения и неравенства
Рациональные уравнения и неравенства

Область изменения параметра а оказалось разделенной на 4 части (не считая граничных точек).

Если а < - 1/3, второе неравенство, а следовательно и данная система не имеют решения. То же имеет место и при а = -1/3. Если –1/3 не имеет решения. То же имеет место и при а = 0.

Если 0 Ответ: Если а < 5, система не имеет решения; если а ³ 5, то 1/а(а + 1 + ) £ х £ 2.

Пример: Решить неравенство

½ 2х2 + х – а - 8½ £ х2 + 2х – 2а – 4.

Решить: Напомним, что неравенство ½ а½ £ b эквивалентно двойному неравенству –b £ a £ b. В нашем случае после преобразования приходим к системе неравенств

а £ -х2 + х + 4,

а £ х2 + х – 4.

Изобразим на плоскости (х; а) множество точек, координаты которых удовлетворяют полученной системе. При конкретном значении параметра а = a решением нашего неравенства будут абциссы тех точек горизонтальной прямой а = a , которые находятся в заштрихованной области. Найдем точки пересечения А(2; 2), В(-2; -2) наших точек парабол и вершину С(-0,5; -4,25) параболы а = х2 +х – 4.

Далее получаем: если а > 2, то соответствующая прямая пересекается с заштрихованной областью.

Если –2 (больший корень уравнения а = х2 + х – 4 или х2 – х – 4 + а= 0).

Если –4ј £ a £ -2, то горизонтальная прямая, соответствующая таким а, пересекается с заштрихованной областью по двум отрезкам. Решением неравенства будет

Рациональные уравнения и неравенства

Системы рациональных неравенств.

Пусть надо найти числовые значения х, при которых превращаются в верные числовые неравенства одновременно несколько рациональных неравенств. В таких случаях говорят, что надо решить систему рациональных неравенств с одним неизвестным х.

Чтобы решить систему рациональных неравенств, надо найти все решения каждого неравенства системы. Тогда общая часть всех найденных решений и будет решением системы.

Пример: Решить систему неравенств

Рациональные уравнения и неравенства

Сначала решаем неравенство

(х – 1)(х – 5)(х – 7) < 0.

Применяя метод интервала (рис. 1), находим, что множество всех решении неравенства (2) состоит из двух интервалов: (-¥ , 1) и (5, 7).

Теперь решим неравенство

Рациональные уравнения и неравенства

Применяя метод интервалов (рис. 2), находим, что множество всех решении неравенства (3) также состоит их двух интервалов: (2, 3) и (4, +¥ ).

Теперь надо найти общую часть решении неравенств (2) и (3). Нарисуем координатную ось х и отметим на ней найденные решения. Теперь ясно, что общей частью решении неравенств (2) и (3) является интервал (5, 7) (рис. 3).

Рациональные уравнения и неравенства

Следовательно, множество всех решении системы неравенств (1) составляет интервал (5, 7).

Пример: Решить систему неравенств

Рациональные уравнения и неравенства

Решим сначала неравенство

х2 – 6х + 10 < 0.

Применяя метод выделения полного квадрата, можно написать, что

х2 – 6х + 10 = х2 - 2× х× 3 + 32 - 32 + 10 = (х – 3) 2 +1.

Поэтому неравенство (2) можно записать в виде

(х – 3) 2+ 1 < 0,

откуда видно, что оно не имеет решении.

Теперь можно не решать неравенство

 Рациональные уравнения и неравенства

так как ответ уже ясен: система (1) не имеет решении.

Пример: Решить систему неравенств

Рациональные уравнения и неравенства

Рассмотрим сначала первое неравенство; имеем

Рациональные уравнения и неравенства

С помощью кривой знаков (рис. 4) находим решения этого неравенства: х < -2; 0 < x < 2.

Решим теперь второе неравенство заданной системы. Имеем x2 - 64 < 0, или (х – 8)(х + 8) < 0. С помощью кривой знаков (рис. 5) находим решения неравенства: -8 < x < 8.

Отметив найденные решения первого и второго неравенства на общей числовой прямой (рис. 6), найдем такие промежутки, где эти решения совпадают (пресечение решении): -8 < x < -2; 0 < x < 2. Это и есть решение системы.

Пример: Решить систему неравенств

Рациональные уравнения и неравенства

Преобразуем первое неравенство системы:

х3(х – 10)(х + 10) ³ 0, или х(х – 10)(х + 10) ³ 0

(т.к. множители в нечетных степенях можно заменять соответствующими множителями первой степени); с помощью метода интервалов (рис. 7) найдем решения последнего неравенства: -10 £ х £ 0, х ³ 10.

Рассмотрим второе неравенство системы; имеем

Рациональные уравнения и неравенства

Находим (рис. 8) х £ -9; 3 < x < 15.

Объединив найденные решения, получим (рис. 9) х £ 0; х > 3.

Пример: Найти целочисленные решения системы неравенств:

Рациональные уравнения и неравенства

Решение: Приведем систему к виду

Рациональные уравнения и неравенства

Складывая первое и второе неравенства, имеем y < 2, 75, а учитывая третье неравенство, найдем 1 < y < 2,75. В этом интервале содержится только одно целое число 2. При y = 2 из данной системы неравенств получим

Рациональные уравнения и неравенства

откуда –1 < x < 0,5. В этом интервале содержится только одно целое число 0.

Ответ: х = 0, y =2.

ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ

Неравенства с одной или двумя переменными можно решать графически.

Неравенство с одной переменой можно записать так: f(x) > g(x), где f(x) и g(x) – выражения, содержащие переменную.

Построим в одной системе координат графики функций y = f(x) и у = g(x).

Решение неравенства есть множество значений переменой х, при которых график функций у=g(x), так как f(x)>g(x).Это показано на рисунках 1 и 2.

Решение неравенства с двумя переменными f(x,y)>0 есть множество

Рациональные уравнения и неравенства

точек плоскости, координаты которых удовлетворяют этому неравенству. Рассмотрим на примерах решение некоторых неравенств с двумя переменными.

Пример 1. Решить графически неравенство

Рациональные уравнения и неравенства

x + у > 0.

Решение. Запишем неравенство в виде у> -х. Построим прямую у= -х. Координаты точек плоскости, которые лежат выше этой прямой, есть решение неравенства ( на рисунке 3 – заштрихованная область).

Пример 2. Решить графически неравенство

х2 – у > 0.

Решение. Запишем неравенство в виде у < x2 .

Построим кривую у = х2 (парабола) (рисунок 4).

Рациональные уравнения и неравенства

Решение неравенства есть координаты точек плоскости, которые лежат в заштрихованной области (ниже построенной параболы).

При решении систем неравенств с двумя переменными находят пересечение областей решений этих неравенств.

Пример 3.Решить графически систему неравенств

Рациональные уравнения и неравенства

Рациональные уравнения и неравенства

Решение. Решение первого неравенства системы есть координаты точек плоскости (рисунок 5), которые лежат вне окружности х+у=4; решение второго неравенства есть координаты точек верхней полуплоскости; решение третьего неравенства есть координаты точек правой полуплоскости.

Решением системы являются координаты точек, которые лежат в заштрихованной области.

ТЕСТ

1) Решить уравнение:   Рациональные уравнения и неравенства

А) 0,

Б) 1,

В) Нет решений,

Г) xÎ (- ¥ ; 1)È (1;

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: