Xreferat.com » Рефераты по математике » Статистические распределения и их основные характеристики

Статистические распределения и их основные характеристики

План


1. Вариация признаков в совокупности и значение её изучения

2. Основные характеристики и графическое изображение вариационного ряда

3. Показатели центра распределения

4. Показатели колеблемости признака


1. Вариация признаков в совокупности и значение её изучения


Составной частью сводной обработки данных статистического наблюдения является построение рядов распределения. Цель его - выявление основных свойств и закономерностей стат. совокупности.

Различают два типа рядов распределения:

атрибутивный;

вариационный.

Ряды распределения, построенные по качественным признакам, называют атрибутивными. (Например, распределение население по полу, характеру труда, национальности и т.д.)

Ряды распределения, построенные по количественному признаку называются вариационными. Числовые значения признака - вариантами.

Например, себестоимость 1 кВт/ч электроэнергии по различным тепловым станциям:


Станции 1 2 3 4 5
с/с 1кВт/ч руб 0,58 0,66 0,59 0,67

0,66



Здесь представлены четыре варианты признака в пределах от 0,58 до 0,67 руб. Колебания себестоимости 1 кВт/ч электроэнергии на различных ТЭЦ обусловлены различными факторами, часто действующими в противоположных направлениях (например, снижение уд. расхода топлива ведёт к снижению себестоимости 1 кВт/ч, а повышение цен на топливо - к увеличению себестоимости). В результате совместного действия многих факторов складывается величина собственности 1 кВт/ч на отдельных ТЭЦ.

Изучение характера и степени вариации признаков и отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Данные о стоимости 1 кВт. ч электроэнергии по 5 ТЭЦ образуют так называемый первичный ряд. При наличии достаточно большого количества вариантов значений признака первичный ряд становится труднообозримым и непосредственное рассмотрение его не дает представления о распределении единиц по величине признака в совокупности. Первым шагом в упорядочении первичного ряда является его ранжирование, т.е. расположение всех вариантов ряда в возрастающем (или убывающем) порядке x1Ј x2Ј…Ј xiЈ…Ј xn.

В нашем примере ранжированный ряд имеет вид:


1 3 2 5 4
0,58 0,59 0,66 0,66 0,67

Рассматривая первичный ряд можно видеть, что варианты признака у отдельных единиц совокупности повторяются.

Число повторений отдельных вариантов называют частотой (обозначим ƒ)

Сумма частот, равная объему изучаемой совокупности - n.

По характеру вариации различают дискретные и непрерывные признаки.

Дискретные признаки отличаются друг от друга на некоторую конечную величину, т.е. даны в виде конкретных чисел. (Например, число детей в семье).

Непрерывные признаки могут отличаться друг от друга на сколь угодно малую величину и в определенных границах принимать любые значения. Например, зарплата рабочих, % выполнения.

Способы построения вариационного ряда для этих видов признаков различны. Для построения дискретного ряда с небольшим числом вариантов достаточно перечислить все встречающиеся варианты значений признака (xi), а затем подсчитать частоту повторений каждого варианта ƒi. (Например, распределение студентов по успеваемости и т.п.)

Ряд распределения принято оформлять в виде таблицы, например, распределение рабочих участка по квалификации.


Таблица 1.

Тарифный разряд рабочего (xi) Число рабочих, имеющих этот разряд (ƒi)

Частости

(vi)

Накопление частоты (Si)
1 2 3 4
2 1 0,05 1
3 5 0,25 6
4 8 0,40 14
5 4 0, 20 18
6 2 0,10 20
Итого 20 1,00

Таким образом, ряд первичных данных, характеризующих квалификацию двадцати рабочих, заменен коротким рядом, состоящим из 5 групп. Вместо абсолютного числа рабочих, имеющих определенный разряд, можно установить долю рабочих этого разряда.

Частоты, представленные в относительном выражении, называют частостями (выражаются в долях единиц или %, обозначаются vi).

В случаях, когда число вариантов дискретного признака велика, а также при анализе вариации непрерывного признака строятся интервальные ряды распределения.

Интервал указывает пределы значений варьирующего признака и обозначаются нижней и верхней границами интервала. Такие распределения наиболее распространены в практике статистической работы.

При построении интервальных рядов необходимо прежде всего установить число групп (интервалов). Для этого нужно определить величину интервала (h). Для построения вариационного ряда с равными интервалами следует:

определить размах вариации (R) - разность между максимальным и минимальным значением признака:


R = x max - x min;


Размах вариации делится на число групп k, т.е. Статистические распределения и их основные характеристики. Число групп приблизительно определяется по формуле Стерджесса


k » 1+3,322 lg n,


где n - число изучаемых единиц совокупности. Это выражение, почти всегда дробное число, округляем до целого.

Величина интервала должна определяться в соответствии с точностью данных наблюдения: если исходные данные представлены целыми числами, то и величина интервала округляется до ближайшего целого числа.

Далее можно определить границы всех интервалов ряда распределения. Нижнюю границу I-го интервала можно принять равной минимальному значению признака.

При построении интервальных рядов для непрерывных признаков имеет место совпадение верхних границ предшествующих интервалов и нижних границ следующих за ними интервалом. В какой интервал относить единицы совокупности.

Рассмотрим пример построения ряда распределения по данным о среднегодовой стоимости основных фондов 20 предприятий главка одного министерства (млн. рублей): 3,7; 4,3; 6,7; 5,6; 5,1; 8,1; 4,6; 5,7; 6,4; 5,9; 5,2; 6,2; 6,3; 7,2; 7,9; 5,8; 4,9; 7,6; 7,0; 6,9.

Определяем количество групп вариационного ряда:


k » 1+3,322 lg 20 = 1+3,322*1,301»5,32=5 (групп).

Величина интервала Статистические распределения и их основные характеристики млн. руб.


В результате группировки получим ряд распределения предприятий по среднегодовой стоимости основных фондов.


Таблица 2.

Среднегодовая стоимость ОФ, млн. руб. Число предприятий Накопление частоты
3,7 - 4,6 2 2
4,6 + 5,5 4 6
5,5 + 6,4 6 12
6,4 + 7,3 5 17
7,3 + 8,2 3 20

Значения признака у отдельных единиц совпала с границами интервала (3,7; 4,6 и 6,4). Так как x min = 3,7 и совпадает с нижней границей I го интервала и включается в этот интервал, то и другие значения следует включать в интервал, нижняя граница которого совпадает с указанным значением (4,6 - включается во II й интервал, а 6,4 - в IV-ый).

Если приведенный вариационный ряд с неравными интервалами, то для правильного представления о характере распределения необходимо рассчитать абсолютную и относительную плотности распределения.

Абсолютная плотность:


Статистические распределения и их основные характеристики;


Относительная плотность:


Статистические распределения и их основные характеристики


Эти показатели необходимы для преобразования интервалов изменения оценки данных, собранных по различным совокупностям и по разному обработанных.

Например, по двум предприятиям известно распределение рабочих по проценту выполнения норм выработки.


Таблица 3.

Завод 1 Завод 2
Группы рабочих

Кол-во рабочих,

% к итогу

Группы рабочих

Кол-во рабочих,

% к итогу

До 90 2 До 100 8
90-100 3 100-120 40
100-110 50 120-150 20
110-120 30 150-180 15
120-140 8 180 и выше 17
140-150 5

150-160 2

ИТОГО 100
100

Воспользуемся укрупнением интервалов для перегруппировки данных.


Таблица 4.

Группы рабочих по проценту выполнения норм выработки Количество рабочих,% к итогу

Завод 1 Завод 2
До 100 5 8
100-120 80 40
120-150 13 20
150 и выше 2 32
ИТОГО 100 100

Можно воспользоваться и другой группировкой по проценту выполнения норм выработки, например, выделить такие интервалы:


Группы рабочих 1 2 3 4 5
% выполнение нормы выработки До 100 100-110 110-120 120-140 140-160

Для такой группировки возникает необходимость расширения ряда распределения рабочих Завода 2.

Если известна относительная плотность распределения, то частости соответствующего интервала можно определить: произведение плотности на величину интервала.

vi=m0iґh.

По данным таблицы 3 определяем плотности распределения группы рабочих по проценту выполнение норм выработки для интервалов:


ІІ - го: 100-120 m02=2,0 (40/20)

ІІІ - го: 120-150 m03=2/3 (20/30)

IV - го: 150-180 m04=1/2 (15/30)


Тогда количество рабочих (% к итогу) Завода 2, выполняющих норму на 140 160% определяются так:


2/3ґ10+1/2ґ10=12.


Результаты перегруппировки представлены в таблице 5.


Таблица 5.

Группы рабочих по проценту выполнения норм выработки Количество рабочих,% к итогу

Завод 1 Завод 2
До 100 5 8
100-110 50 20
110-120 30 20
120-140 8 13
140-160 7 12
160 и выше - 27
ИТОГО 100 100

2. Основные характеристики и графическое изображение вариационного ряда


Для целей анализа и сравнительной характеристики различных рядов распределения применяются обобщающие показатели вариационного ряда. Систему показателей рассмотрим на примере.

Допустим, что по 5 производственным участкам известны данные о распределении 100 рабочих по квалификации (табл.6).


Таблица 6.

Разряд рабочих Число рабочих участка

I II III IV V
2 20 - 10 1 5
3 60 20 20 9 10
4 20 60 40 80 6
5 - 20 20 9 15
6 - - 10 1 10
Итого 100 100 100 100 100

Распределения рабочих І-го и ІІ-го участков, имеют одинаковый размах вариации и характер распределения частично отличаются: величиной варьирующего признака, т.е. центром группирования.

Среднее квадратическое отклонение показывает также как расположена основная масса единиц совокупности относительно средней арифметической. В соответствии с теоремой Чебышева можно утверждать, что независимо от формы распределения 75% значений признака попадают в интервал Статистические распределения и их основные характеристики; а по крайней мере 89% всех значений попадают в интервал Статистические распределения и их основные характеристики

Необходимо отметить, что если при расчете арифметической для достаточно симметричного ряда распределения м/д Статистические распределения и их основные характеристикине оказывают существенного влияния на ее отклонение от средней арифметической, рассчитанной по первичным данным, то при расчете дисперсии этот факт приводит к появлению систематической ошибки.

В.Ф. Шеппард установил, что ошибка в дисперсии, вызванная применением сгруппированных данных при расчете составляет 1/12 квадрата величины интервала, т.е. скорректированная дисперсия равна


Статистические распределения и их основные характеристики


І группа обобщающих показателей - характеристика центра группирования в качестве которых используют: среднюю арифметическую,

моду;

медиану.

Распределение рабочих ІІ-го и ІІІ-го участков имеют один и тот же центр группирования и симметричное расположение частот вокруг него, но отличаются пределами вариации.

ІІ группа - показатели степени вариации - т.е. характеристика колеблемости признака.

Распределение рабочих ІІІ-го и IV-го участков имеют и тот же центр группирования, пределы варьирования признака, симметричный характер ƒ расположения частот, но имеют разную степень вытянутости вдоль оси ординат, которая характеризуется показателями эксцесса.

Распределение рабочих IV-го и V-го участков показывает, что они отличаются характером распределения частот относительно центра. Для IV-го участка оно симметрично, для V-го участка оно не симметрично.

Степень отклонения от симметричной формы характеризуется показателями асимметрии.

ІІІ группа показателей - показатели формы распределения.

Графическое изображение рядов расширения облегчает их анализ и позволяет судить о форме распределения. Для графического изображения дискретного ряда применяют полигон распределения. На оси абсцисс отмечают точки, соответствующие величине варианты признака. Из них восстанавливаются перпендикуляры, высота которых - частости этих вариантов. Вершины перпендикуляров соединяются отрезками прямых. Крайние вершины соединяются с точками на оси абсцисс, отстоящими на одно деление от xmax и xmin.

Для графического изображения интервальных вариационных рядов применяется гистограмма.

Она строится так, что на оси абсцисс откладываются равные отрезки, которые соответствуют величине интервалов вариационного ряда. На отрезках строят прямоугольники, площади которых пропорциональны частотам (частостям) интервала.

Статистические распределения и их основные характеристикиПо данным табл.1 построим полигон распределения.

Статистические распределения и их основные характеристикиf









8







7







Статистические распределения и их основные характеристики6









5







4







3







2







1








1 2 3 4 5 6 7 x

По данным табл.2 построим гистограмму ряда распределения предприятий по стоимости основных фондов.


f







6







Статистические распределения и их основные характеристики5









4







3







2







1









3,7 4,6 5,5 6,4 7,3 8,2

Статистические распределения и их основные характеристики


Статистические распределения и их основные характеристикиГистограмма может быть преобразована в полигон распределения, для чего середины верхних сторон прямоугольников соединяют отрезками прямых. Две крайние точки прямоугольников замыкаются по оси абсцисс на середины интервалов, в которых частоты равны 0.

При увеличении числа наблюдений совокупности увеличивается число групп интервального ряда, что соответственно приводит к уменьшению величины интервала. При этом ломанная линия будет иметь тенденцию превращения в плавную кривую, которую называют кривой распределения. Она характеризует в обобщенном виде вариацию признака и распределение частот внутри однокачественной совокупности.

В ряде случаев для изображения вариационных рядов используется кумулятивная кривая (кумулянта). Построим кумулятивную кривую по данным табл.2 о распределении банков по размеру прибыли. Накопленные частоты рассчитаны в графе 3 табл.2.

При построении кумулянты интервального ряда распределения нижней границе первого интервала соответствует частота, равная 0, а верхней границе - вся частота данного интервала. Верхней границе второго интервала соответствует накопленная частота, равная сумме частот первых двух интервалов и т.д.


S







Статистические распределения и их основные характеристики20









16







12







8







4









3,7 4,6 5,5 6,4 7,3 8,2

Статистические распределения и их основные характеристики


Изображение вариационного ряда в виде кумулянты особенно удобно при сравнении вариационных рядов, а так же в экономических исследованиях, в частности для анализа концентрации производства


3. Показатели центра распределения


Для характеристики среднего значения признака в вариационном ряду используются средняя арифметическая, мода и медиана.

Общие понятия о средних величинах и их свойствах рассматривались в предыдущей лекции. Здесь же мы рассмотрим расчет показателей центра распределения для вариационных рядов.

Напоминаю, что средняя арифметическая рассчитывается по формуле:


Статистические распределения и их основные характеристики


В интервальном ряду средняя арифметическая определяется по формуле:


Статистические распределения и их основные характеристики,


где x’ - средина соответствующего интервала;

f - частота повторений варианты признака.

В отличие от алгебраических средних, которые в значительной мере являются абстрактной характеристикой статистического ряда, мода и медиана выступают как конкретные величины, совпадающие с вполне определенными вариантами этого ряда.

Мода - это наиболее часто встречающаяся величина признака в данной совокупности.

В вариационном ряду моду будет представлять варианта, которая обладает наибольшей частотой.

В дискретном ряду распределения мода определяется просто.

Пример 1. Распределение семей по числу совместно проживающих членов семьи.

Таблица.

Число членов семьи Число семей,% к итогу Накопленные частоты, S
2 10 10
3 37 47
4 28 75
5 15 90
6 9 99
7 1 100
ИТОГО 100 -

Модой в данном примере являются 3 члена семьи, т.к этой величине соответствует наибольшая частность (37).

Мода интервального вариационного ряда определяется по формуле:


Статистические распределения и их основные характеристики;


где x0 - начало модального интервала,

h - величина интервала (модального),

f0 - частота модального интервала,

f-1 - частота предмодальная,

f+1 - послемодальная частота.

Используя данные табл.2 определим моду:


Статистические распределения и их основные характеристики


При неравных интервалах для расчета моды применяется эта же формула, но вместо частот в ней следует использовать плотность распределения.

Медианой в статистике называется численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда.

Порядковый номер медианы определяется следующим образом: численность (дискретного) ряда увеличивается на единицу и делится пополам, т.е. (n+1) /2.

Если вариантов - четное число, то медиана определяется как среднее из двух центральных вариантов, порядковые номера которых n/2 и (n/2) +1. Так, если в ряду распределения 100 единиц, то в центре стоят единицы с порядковыми номерами 100: 2=5 и 100: 2+1=51 и медиана должна быть получена как средняя из величин этих вариантов. Однако, если единиц в совокупности достаточно много и различия между величинами рядом стоящи вариантов небольшие, то можно считать медианой один из центральных вариантов с порядковым номером n/2. Так обычно делают, определяя медиану при четном числе членов ряда.

При определении медианы для интервальных рядов, вначале определяется медианный интервал, т.е. интервал, в котором лежит медиана. Он определяется также как и при определении медианы дискретного ряда, т.е. подсчитывают суммы накопленных частот.


Статистические распределения и их основные характеристики,


Где x0 - нижняя граница медианного интервала,

h - величина интервала,

S-1 - накопленная частота интервала, предшествующего медианному,

fме - частота медианного интервала.


Статистические распределения и их основные характеристики


Моду и медиану можно определить графически. Медиана определяется по кумулянте. Моду - по гистограмме распределения.


4. Показатели колеблемости признака


В ходе анализа средних величин возникает вопрос степени колеблемости, степени вариации, скрывающейся за средней величиной. Для характеристики колеблемости варьирующего признака в изучаемой совокупности явлений применяются следующие показатели:

Размах вариации;

Среднее линейное отклонение;

Дисперсия;

Среднее квадратическое отклонение;

Коэффициент.

Размах вариации или размах колеблемости является наиболее простым измерителем вариации признака. Он равен разности между наибольшим (максимальным) и наименьшим (минимальным) значением варьирующего признака в данном ряду.


R = xmax - xmin.


При определении величины размаха вариации учитываются только два крайних значения признака, колеблемость же и распространенность (частота) его в этом показателе не находят отражения.

Среднее линейное отклонение является несколько более совершенной мерой вариации и характеризует колеблемость значений признака по всей совокупности явлений.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных отклонений варьирующего признака от его среднего значения. Так как алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической всегда равна 0, то для расчета среднего линейного отклонения используется арифметическая сумма отклонений, т.е. суммируются абсолютные значения индивидуальных отклонений независимо от знака.

Среднее линейное отклонение Статистические распределения и их основные характеристики вычисляется по следующим формулам:


Для первичного ряда: Статистические распределения и их основные характеристики

Для вариационного ряда: Статистические распределения и их основные характеристики


Дисперсия s2 - средняя из квадратов отклонений вариантов значений признака от их средней величины. Дисперсия рассчитывается по следующим формулам:

Для первичного ряда:


Статистические распределения и их основные характеристики


для вариационного ряда:


Статистические распределения и их основные характеристики


Формулу для расчета дисперсии можно преобразовать:


Статистические распределения и их основные характеристики,


т.е. дисперсия равна разности средней из квадратов и квадрата средней. Этой формулой пользуются машинной обработке исходных данных.

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить ее вычисления:

дисперсия постоянной величины равна 0;

если все варианты значений признака уменьшить на одно и то же число, то дисперсия не уменьшится;

если все варианты значений признака уменьшить в одно и то же число раз (k раз), то дисперсия уменьшится в k2 раз.

Среднее квадратическое отклонение представляет собой среднюю, исчисленную на основе квадратов отклонений отдельных значений варьирующего признака от их среднего значения.

Среднее квадратическое отклонение s представляет собой корень квадратный из дисперсии:

Для первичного ряда:


Статистические распределения и их основные характеристики


Для вариационного ряда:


Статистические распределения и их основные характеристики


Размах вариации, среднее линейное и среднее квадратическое отклонение являются величинами именованными. Они имеют те же единицы измерения, что и индивидуальные значения признака.

Дисперсия и среднее квадратическое отклонение - наиболее широко применяемые показатели вариации. Объясняется это тем, что они входят в большинство теорем теории вероятности, служащих фундаментом математической статистики.

Расчет показателей вариации для предприятий, сгруппированных по среднегодовой стоимости основных фондов, показан в таблице.


Средняя годовая стоимость ОФ, млн. руб.

Число предприятий

f

Средина интервала

X’





3,7-4,6 2 4,15 8,30 -1,935 3,870 7,489
4,6-5,5 4 5,05 20, 20 -1,035 4,140 4,285
5,5-6,4 6 5,95 35,70 -0,135 0,810 0,109
6,4-7,3 5 6,85 34,25 +0,765 3,825 2,926
7,3-8,2 3 7,75 23,35 +1,665 4,995 8,317
ИТОГО 20
121,70
17,640 23,126

Статистические распределения и их основные характеристики


Среднее линейное отклонение:


Статистические распределения и их основные характеристики


Среднее квадратическое отклонение:


Дисперсия: Статистические распределения и их основные характеристики

Статистические распределения и их основные характеристики


Так как средняя величина колеблемости средней годовой стоимости основных фондов составляет:

По среднему линейному отклонению - 0,822 млн. руб.

По среднему квадратическому - 1,075 млн. руб.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность.

При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической пользуются относительными показателями вариации. Эти показатели вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах, среднее линейное отклонение, среднее квадратическое отклонение, относительные показатели колеблемости:


Коэффициент осцилляции Статистические распределения и их основные характеристики -


отражает относительную колеблемость значений признака вокруг средней, крайних.

Относительное линейное отклонение


Статистические распределения и их основные характеристики


- характеризует долю усредненного значения абсолютных отклонений от средней величины.


Коэффициент вариации Статистические распределения и их основные характеристики


Наиболее часто применяется показатель колеблемости - коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

Для рассмотренного примера:


Статистические распределения и их основные характеристики

Статистические распределения и их основные характеристики

Статистические распределения и их основные характеристики


Оставалась на коэффициенте вариации, можно сделать вывод, что по размеру прибыли совокупность является однородной.

Если статистическая совокупность разбита на группы по какому-либо признаку, то для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, можно воспользоваться разложением дисперсии на составляющие: на межгрупповую и внутригрупповую дисперсии.

Общая дисперсия характеризует вариацию признака, которая зависит от всех условий в данной совокупности и вычисляется:


Статистические распределения и их основные характеристики

Статистические распределения и их основные характеристики

где - общая средняя для всей изучаемой совокупности.

Межгрупповая дисперсия отражает вариацию изучаемого признака, которая возникает под влиянием признака фактора, положенного в основу группировки. Она характеризует колеблемость групповых (частных) средних около общей средней.

Межгрупповая дисперсия вычисляется по формуле:


Статистические распределения и их основные характеристики,

Статистические распределения и их основные характеристики

Статистические распределения и их основные характеристикигде - средняя по отдельным группам,

- частота отдельных групп.

Средняя из внутригрупповых дисперсий характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других, не учитываемых факторов и не зависит от условия, положенного в основу группировки.

Она определяется по формуле:


Статистические распределения и их основные характеристики


Статистические распределения и их основные характеристикиСтатистические распределения и их основные характеристикиМежду общей дисперсией, средней из внутригрупповых дисперсий и межгрупповой d2 дисперсиями существует соотношение, определяемое правилом сложения дисперсий:


Статистические распределения и их основные характеристики.


Рассмотрим правило сложение дисперсий на следующем примере.

По результатам маркетингового обследования туристических фирм, организующих недельные туры в Испанию в различные курортные города, получены следующие данные о вариации стоимости туров в сентябре 1997 г.


Месторасположение курорта Число турист. фирм, fi Средняя цена недельного тура, дол. Дисперсия цен тура в группе
Коста - Брава 7 528,57 2728,04
Коста-дель-Соль 6 588,33 8851,14
ИТОГО: 13 556,16 5554,08

Вариация цен в обследованной группе туристических фирм, обусловленная различием в месторасположении курорта будет характеризоваться величиной межгрупповой дисперсии.

Средняя цена тура по всем фирмам составила:


Статистические распределения и их основные характеристики$Статистические распределения и их основные характеристики


Тогда межгрупповая будет равна:


Статистические распределения и их основные характеристики


Вариация цен под влиянием всех прочих факторов, кроме месторасположения курорта, будет характеризоваться величиной средней из внутригрупповых дисперсий:


Статистические распределения и их основные характеристики


Вариация цен на недельные туры в Испанию, обусловленная влиянием всех факторов, формирующих уровень цен в заданной группе:


Статистические распределения и их основные характеристики


Правило сложения дисперсий имеет большую практическую значимость, т.к. позволяет выявить зависимость результатов от определяющих факторов соотношением межгрупповой и общей дисперсии - коэффициент детерминации.


Статистические распределения и их основные характеристики


Отсюда можно сделать вывод, что на 13,78% дисперсия цен на

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: