Xreferat.com » Рефераты по математике » Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

М.И. Векслер, Г.Г. Зегря

Рассмотрим пример сферической системы ρ = ρ(r), кроме того, возможно, имеются заряженные сферы (Ri, σi) и/или точечный заряд qc в центре. Помимо этого, ε = ε(r). Согласно теореме Гаусса,

qinside = 4π r2 Dr = 4π ε0ε(r) r2 Er (31)

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

(32)

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

(33)

При наличии только объемного стороннего заряда ρ

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

(34)

В точках разрыва ε(r) (на стыке двух диэлектриков) или qinside(r) (в момент "перехода" через заряженную сферу) соответствующая производная ε'(r) или qinside'(r) имеет разрыв. При этом поверхностный связанный заряд составляет:

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

(35)

Другие значения r проверять на наличие связанного заряда бессмысленно, так как там заведомо σ' = 0.

Задача. Имеются две концентрические заряженные сферы (σ1, R1 и σ2, R2). Найти Er(r), φ(r) и σ ', если пространство между сферами заполнено однородным диэлектриком с проницаемостью ε.

Решение Такая задача, только без диэлектрика между обкладками, уже была решена нами с использованием теоремы Гаусса. Единственным отличием здесь будет связь Dr(r) и Er(r) в области R1<r<R2: если раньше она была Dr = ε0Er, то теперь Dr = ε0ε Er. Это повлечет за собой некоторые изменения в формулах.

Как и раньше,

qinside = 4π r2 Dr(r)


причем

qinside = 0 при r<R1


4πσ1R12 при R1<r<R2


4πσ1R12+4πσ2R22 при r>R2

Поле на каждом из участков будет

Er = 0 при r<R1


Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса




Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


При вычислении потенциала мы должны вычислить Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса. При этом необходимо правильно выписывать Er на каждoм участке:

φ(r) =

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса



=

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


φ(r) =

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса



=

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


φ(r) =

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса



=

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


В некоторых выражениях для φ(r) (но не всюду!) появилась дополнительная величина ε.

Для нахождения σ ' на сферах r = R1 и r = R2 нам потребуются значения поляризованности с обеих сторон каждой из сфер:

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

,

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

,

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


Нулевые значения появились из-за отсутствия диэлектрика в областях r<R1 и r>R2. Сразу же находим Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гауссаи Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса(на других поверхностях никакого связанного заряда нет):

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

=

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

=

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса


Легко проверить, что суммарный связанный заряд, то есть Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса, равен нулю, как и должно быть.

Задача. Шар радиуса R равномерно заряжен по объему сторонним зарядом ρ. Проницаемость шара ε. Найти Er(r), φ(r), ρ'(r), σ' на краю шара.

Ответ: Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме ГауссаРасчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса

Расчет поля симметричного распределения зарядов в неоднородной среде по теореме ГауссаРасчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса.

Список литературы

1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.

2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.

3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: