Xreferat.com » Рефераты по астрономии » Мир Галактик (Галактики и звездные системы)

Мир Галактик (Галактики и звездные системы)

значения скоростей становятся похожими на те, что соответствуют только внутренней массе. Это называется кеплеровской частью кривой, так как именно Кеплер нашел связь между скоростями планет и расстояниями их до Солнца - открытие, приведшее Ньютона к открытию закона тяготения. Внутри кеплеровской части кривой скорости звезд увеличиваются по мере удаления от центра (см. рис.). Потом скорость выходит на постоянный уровень, после чего кривая вращения начинает падать. За точкой поворота все скорости кеплеровские и они должны дать величину массы галактики. Для большей точности астрономы подгоняют под весь набор скоростей, измеряемых при различных положениях, разные модели распределения массы в галактике, узнавая таким образом кое-что об этом распределении, а также значение общей массы.

В 60-е годы эти исследования велись весьма интенсивно. Астрономы определили массы многих галактик и нашли зависимость между светимостью галактики и ее массой и между хаббловским типом и массой. Обычно галактики типов Sa и Sb имели большие массы на единицу светимости, чем галактики других типов, то есть их звезды в среднем менее яркие, чем звезды в галактиках типа Sc и Irr. Для всех типов было впечатление, будто кривая вращения загибается вниз вблизи границы наблюдаемой области. Казалось, природа так построила галактики, чтобы мы как раз могли увидеть на самых внешних их звездах начало кеплеровского движения. Кривые хорошо согласовывались с моделями распределения массы, и распределение вещества в галактиках выглядело весьма разумным.

Другой метод определения масс галактик может быть применен к тем из них, что являются членами двойных систем. Две обращающиеся вокруг друг друга галактики должны подчиняться закону тяготения Ньютона, утверждающего зависимость размеров орбит и скоростей от масс галактик. Наблюдая всего одну двойную галактику, нельзя надеяться использовать этот факт, так как орбитальные периоды составляют миллионы и миллиарды лет - это слишком долго, чтобы ждать. К тому же галактики видны лишь с одного направления, так что нельзя определить угол наклона орбиты к лучу зрения. Но эти трудности преодолимы, если мы наблюдаем много двойных галактик и определяем их параметры статистически. Хотя мы не можем проследить ни одну данную пару на протяжении всей орбиты, можно пронаблюдать достаточно много двойных галактик, чтобы получить их средние массы.

Чтобы учесть очень большое различие размеров двух галактик при наблюдении двойной системы, астрономы вместо индивидуальных масс вычисляют средние значения отношений массы к светимости. Это позволяет компенсировать то обстоятельство, что более яркая галактика будет также и более массивной. Например, для двойной галактики, состоящей из эллиптической галактики очень высокой светимости и небольшой эллиптической галактики, можно принять одинаковые значения отношений массы к светимости, но их движение не будет одинаковым. Меньшая галактика будет двигаться вокруг общего центра масс быстро, а большая - медленно. Оценка средней массы будет примерно посередине и не будет характеризовать ни одну из галактик, но вычисленные для всей системы отношения массы к светимости позволят астроному определить индивидуальные массы каждой из галактик. На практике это следует проделать для многих пар эллиптических галактик - для учета разных углов наклона и форм орбит.

Результаты исследования пар галактик разных типов удивительны. Вместо того, чтобы получить отношения массы к светимости от 1 до 10 (это диапазон значений для отдельных галактик, исследованных при помощи упомянутых выше методов), астрономы получили гораздо большие величины. Типичное значение для пар эллиптических галактик около 75, а пары спиральных галактик попадают в интервал от 20 до 40. Эти значения поставили получивших их людей в тупик и настолько отличались от ожидаемых, что были предприняты значительные усилия, чтобы установить, каким образом результаты могли исказиться. Может быть, в чем-то предположения были неверными? Возможно, галактики в парах по какой-то причине эволюционного характера существенно массивнее (для своей светимости), чем уединенные галактики. Или, быть может, статистический подход оказался в чем-то порочен? Из-за этих сомнений астрономы старались относиться к результатам, полученным по двойным галактикам, с осторожностью. Этого не следовало делать, а надо было перенести свои подозрения на более традиционные методы. Как будет видно из следующих разделов, имеющиеся данные говорят о том, что двойные галактики дают лучшие результаты, чем мы думали.

Галактики обычно существуют в группах: они объединяются. Некоторые, вроде Млечного Пути, принадлежат к небольшим организациям наподобие Местной группы, в то время как другие являются членами огромных скоплений, содержащих тысячи галактик. Во всех случаях это обстоятельство дает нам в руки еще один метод определения масс галактик. В скоплении каждая галактика движется в соответствии с силой притяжения со стороны других объектов. Насколько быстро они в среднем движутся, зависит от среднего расстояния между ними и от их масс. Ситуация аналогична ситуации с дисперсией скоростей звезд в галактике, но теперь мы рассматриваем движение отдельных галактик в скоплении. Если предположить, что скопления галактик устойчивы, то есть не охлопываются и не разлетаются, то движение отдельных членов и расстояния между ними должны дать оценку их масс.

Проблема с этим методом в том. что он тоже, как казалось. давал неправильный ответ. Когда в начале 60-х годов таким образом впервые были определены отношения массы к светимости, результаты оказались поразительными. Вместо значений около 1 - 10 были получены величины, равные сотням и даже тысячам. Как же этот метод может быть неправильным? Предложенные многочисленные гипотезы включали возможность расширения скоплений, их сжатия, возможность, что они состоят из аномально массивных галактик, что в скоплениях много двойных галактик (что ведет к большим значениям измеренных скоростей) или что между галактиками в скоплениях много межгалактического вещества - достаточно, чтобы затмить гравитационное поле самих галактик. Сейчас мы с большим доверием смотрим на результаты, полученные по скоплениям, чем сначала. Нет сомнения, что все перечисленные факторы играют некоторую роль, но главное объяснение совершенно иное. Галактики все время скрывали от нас ужасную тайну: они полны загадочным "темным веществом".

Знание приходит к нам разными путями, но самый волнующий известен под названием "прорыв". Он происходит после того. как ученые на некоторое время как бы "застревают" и понимают, что чего-то не хватает: какой-то важный фрагмент знания на пороге, но ускользает и остается не найденным. Исследование масс галактик прошло через подобную фазу, когда большинство астрономов чувствовало, что что-то в этой области науки не так, что какой-то важный факт ускользнул. Результаты измерений масс различными способами не согласовывались, и особенно острой была проблема для скоплений галактик. Эта область науки определенно нуждалась в прорыве.


Первым признаком надвигающегося прорыва было недавнее исследование нейтрального водорода в M31. Когда был обнаружен и измерен газ на очень большом расстоянии от ядра, кривая вращения отказалась загнуться вниз и стать кеплеровской (см. рис.). Далеко за тем местом, где согласно оптическим данным был достигнут загиб кривой, новые результаты для нейтрального водорода свидетельствовали о том, что скорость остается почти постоянной. Это возможно, только если большие массы находятся в далеких областях какого-то невидимого гало вокруг M31 далеко за пределами видимых частей галактики. Были приняты во внимание все возможные типы объектов, которые могли объяснить эту массу. Предполагалось, что это могут быть очень тусклые красные звезды или газ, ионизованный таким образом, что его нельзя наблюдать как нейтральный водород. Но эти простые гипотезы, так же как и другие, включавшие все известные объекты, были опровергнуты разного рода точными наблюдениями. Масса не могла быть ничем простым.

Тем временем появились другие данные, свидетельствовавшие о распространенности подобных массивных гало из невидимого вещества у галактик. Более изощренные теоретические модели требовали наличия очень массивных гало для сохранения устойчивости наблюдаемой плоской части спиральных галактик. Утверждалось, что плоский компонент галактики разрушится, если не будет удерживаться преобладающим тяготением окружающей массы.

При наблюдении других галактик помимо M31. Включая нашу собственную, стали обнаруживать, что кажущийся загиб кривой вращения был во многих случаях просто небольшой флуктуацией. К 80-м годам создалось впечатление, что нет галактик, масса которых заключена в видимом диске. Теперь обнаружено несколько галактик, демонстрирующих во внешних частях кеплеровскую кривую, но в большинстве случаев это не так. Большая часть оптических и радиокривых, по-видимому, сохраняет постоянную скорость вплоть до самой далекой доступной наблюдениям точки - даже при использовании для регистрации наиболее слабого излучения самого мощного современного оборудования. Редко большая часть вещества в галактиках располагается в пределах видимых изображений. Наоборот, основная часть массы галактики расположена за теми пределами, где, как нам кажется, она кончается.

Если у галактик действительно есть темные гало. то обсуждавшиеся выше противоречия можно понять. Метод кривой вращения дает лишь массу внутри пределов, ограниченных самой внешней из точек, где проводились измерения, а метод дисперсии скоростей говорит нам только об отношении массы к светимости в центре, делая необходимой экстраполяцию на внешние области с использованием распределения яркости для определения полной массы. Ни один из этих методов не может обнаружить массивные невидимые гало. Но они обнаруживаются методом двойных галактик, так как галактики обращаются одна вокруг другой по орбитам, которые расположены в основном или полностью вне массивных гало отдельных членов. Аналогично метод скоплений тоже должен быть индикатором общей массы галактик.

В новом ходе развития событий прискорбно то, что если новые большие измеренные значения масс правильны, то при современных астрономических исследованиях большая часть Вселенной не наблюдается. Большая часть вещества в космосе заключена в какой-то неизвестной форме в массивных гало галактик и то, что мы наблюдаем как галактики, - всего лишь вершины очень больших айсбергов. Грандиозные спиральные галактики являются лишь скелетами огромных таинственных призраков, природа которых все еще остается неизвестной.


Для объяснения невидимого вещества в гало галактик было предложено много типов объектов. Когда физики впервые предположили, что у крошечной частицы под названием нейтрино может быть небольшая масса (до этого считалось, что масса покоя частицы равна нулю), кто-то тут же сказал, что гало могут состоять из нейтрино. При появлении сообщения об открытии физиками монополя (отдельного изолированного магнитного полюса) с ничтожно малой массой, кто-то сразу предположил, что гало могут состоять из монополей. При появлении других возможностей всегда, казалось, была надежда объяснить состав гало галактик, К сожалению, сейчас похоже, что нейтрино вообще не имеет массы, а единственный обнаруженный монополь мог быть ошибкой эксперимента, так что, вероятно, ни один из этих объектов не решит нашу проблему. Мы остались с весьма небольшим списком невероятных объектов, ни один из которых, похоже, нам не подходит. В этом списке есть все объекты, которые только можно придумать, имеющие массу и при этом невидимые в галактиках. Например, планеты вроде Земли, не сопровождаемые светящейся звездой, будут иметь массу и излучать при этом слишком мало света, чтобы быть обнаруженными. Подойдут также и более мелкие объекты - каменные глыбы или мелкие камешки. Проблема с подобными объектами в том, что никто не может придумать способ их производства в достаточном количестве. Можно довольно уверенно утверждать, что планета не может образоваться, если поблизости нет звезды, и то же верно для каменных глыб. Единственные достойные рассмотрения объекты - это черные дыры, массивные и ничего не излучающие, которые каким-то образом могут образовываться во внешних частях протогалактик. Но что бы это ни было - черные дыры, каменные глыбы или экзотические субатомные частицы - возможность того, что большая часть Вселенной от нас скрыта, вызывает озабоченность. Мы живем в обширном и подавляюще темном космическом облаке, лишь кое-где освещенном свечами.


6. Строение нашей Галактики


Важнейшей особенностью небесных тел является их свойство объединяться в системы. Земля и её спутник Луна образуют систему из двух тел. Так как размеры Луны не так уж малы в сравнении с размерами Земли, то некоторые астрономы склонны рассматривать Землю и Луну как двойную систему Юпитер и Сатурн со своими спутниками - примеры более богатых систем. Солнце, девять планет с их спутниками, множество малых планет, комет и метеоров образуют систему более высокого порядка - Солнечную систему. Не образуют ли систем и звезды?

Первое систематическое исследование этого вопроса выполнил во второй половине 18 века английский астроном Вильям Гершель. Он производил в разных областях неба подсчеты звёзд, наблюдаемых в поле зрения его телескопа. Оказалось, что на небе можно наметить большой круг, рассекающий все небо на две части и обладающий тем свойством, что при приближении к нему с любой стороны число звезд, видимых в поле зрения телескопа, неуклонно возрастает и на самом круге становится небольшим. Как раз вдоль этого круга, получившего название галактического экватора, стелется Млечный Путь, опоясывающая небо чуть светящаяся полоса, образованная сиянием неярких далёких звезд. Гершель правильно объяснил обнаруженное им явление тем, что наблюдаемые нами звезды образуют гигантскую звездную систему, которая сплюснута к галактическому экватору.

И все же, хотя вслед за Гершелем исследованием строения нашей звездной системы - Галактики занимались известные астрономы - В. Струве, Каптейн и другие. Само представление о существовании Галактики как обособленной звездной системы являлось до тех пор, пока не были обнаружены объекты, находящиеся вне Галактики. Это произошло только в 20 годы нашего века, когда выяснилось, что спиралеобразные и некоторые другие туманности являются гигантскими звездными системами, находящимися на огромных расстояниях от нас и сравнимыми по строению и размерам с нашей Галактикой.

Выяснилось, что существует множество других звездных систем - галактик, весьма разнообразных по форме и по составу, причем среди них имеются галактики, очень похожие на нашу. Это обстоятельство оказалось очень важным. Наше положение внутри Галактики, с одной стороны, облегчает её исследование, а с другой - затрудняет, так как для изучения строения системы выгоднее её рассматривать не изнутри, а со стороны.

Форма Галактики напоминает круглый сильно сжатый диск. Как и диск, Галактика имеет плоскость симметрии, разделяющую её на две равные части и ось симметрии, проходящую через центр системы и перпендикулярную к плоскостям симметрии. Но у всякого диска есть точно обрисованная поверхность - граница. У нашей звездной системы такой чётко очерченной границы нет, также как нет чёткой верхней границы у атмосферы Земли. В Галактике звёзды располагаются тем теснее, чем ближе данное место к плоскости симметрии Галактики и чем ближе оно к её плоскости симметрии. Наибольшая звёздная плотность в самом центре Галактики. Здесь на каждый кубический парсек приходится несколько тысяч звёзд, т.е. в центральных областях Галактики (в балдже) звёздная плотность во много раз больше, чем в окрестностях Солнца. При удалении от плоскости и оси симметрии звёздная плотность убывает, при чём при удалении от плоскости симметрии она убывает значительно быстрее. По этому если бы мы условились считать границей Галактики те места, где звёздная плотность уже очень мала и составляет одну звезду на 100 пс, то очерченное этой границей тело было бы сильно сжатым круглым диском. Если границей считать область, где звёздная плотность ещё меньше и составляет одну звезду на 10 000 пс, то снова очерченной границей тело будет диском примерно той же формы, но только больших размеров. По этому нельзя вполне определённо говорить о размерах Галактики. Если всё-таки границами нашей звёздной системы считать места, где одна звезда приходится на 1 000 пс пространства, то диаметр Галактики приблизительно равен 30 000 пс, а её толщена 2 500 пс. Таким образом, Галактика - действительно сильно сжатая система: её диаметр - в 12 раз больше толщины.

Количество звёзд в Галактике огромно. По современным данным оно превосходит сто миллиардов, т.е. примерно в 25 раз превосходит число жителей нашей планеты.

Существование газа в пространстве между звёздами впервые было обнаружено по присутствию в спектрах звёзд линий поглощения, вызываемых межзвёздным кальцием и межзвёздным натрием. Эти кальций и натрий заполняют всё пространство между наблюдателем и звездой и со звездой непосредственно не связаны.

После кальция и натрия было установлено присутствие кислорода, калия, титана и других элементов, а также некоторых молекулярных соединений: циана, углеводорода и др.

Плотность межзвёздного газа можно определить по интенсивности его линий. Как и следовало ожидать, она оказалось очень малой. Плотность межзвёздного натрия, например, близ плоскости Галактики, где он наиболее плотен, соответствует одному атому на 10 000 см пространства. Долгое время не удавалось обнаружить межзвёздный водород, хотя в звёздах он самый обильный газ. Это объясняется особенностями физического строения атома водорода и характером поля излучения Галактики. Близ плоскости Галактики один атом водорода приходится на 2-3 см3 пространства. Это значит, что плоскость всей газовой материи около плоскости Галактики составляет 5-8 * 1025 см3, масса газа и других элементов ничтожно мала.

Распределён межзвёздный газ неравномерно, местами образуя облака с плотностью в десятки раз выше средней, а местами создавая разряжения. При удалении от плоскости Галактики средняя плотность межзвёздного газа быстро падает. Общая его масса в Галактике составляет 0,01-0,02 общей массы всех звёзд.

Звёзды - горячие гиганты, излучающие большое количество ультрафиолетовых квантов, ионизируют вокруг себя межзвёздный водород в значительной области. Размер зоны ионизации в очень большой степени зависит от температуры и светимости звезды. Вне зон ионизации почти весь водород находится в нейтральном состоянии.

Таким образом, все пространство Галактики можно разделить на зоны ионизированного водорода и где водорода неионизирован. Датский астроном Стремгрен теоретически показал, что постепенного перехода от области , где водород практически весь ионизирован, к области, где он нейтрален, нет.

В настоящее время разработан метод определения закона вращения всей массы нейтрального водорода Галактики по совокупности профилей его эмиссионной линии 21 см. Можно полагать, что нейтральный водород в Галактике вращается так же или почти так же, как и сама Галактика. Тогда становится известным и закон вращения Галактики.

Этот метод в настоящее время дает наиболее надежные данные о законе вращения нашей звездной системы, т.е. данные о том, как изменяется угловая скорость вращения системы по мере удаления от центра Галактики к её окраинным областям.

Для центральных областей угловую скорость вращения пока определить не удается. Как видно, угловая скорость вращения Галактики убывает по мере удаления её от центра сначала быстро, а затем медленнее. На расстоянии 8 кпс. от центра угловая скорость равна 0, 0061 в год. Это соответствует периоду обращения 212 млн. лет. В районе Солнца (10 кпс. от центра Галактики) угловая скорость равна 0, 0047 в год, причем период обращения 275 млн. лет. Обычно именно эту величину- период обращения Солнца вместе с окрестными звездами около центра нашей звездной системы- считают периодом вращения Галактики и называют галактическим годом. Но нужно понимать, что общего периода для Галактики нет, она вращается не как твердое тело. В районе Солнца скорость равна 220 км/с. Это значит, что в своём движении вокруг центра Галактики Солнце и окрестные звёзды пролетают в секунду 220 км.

Период вращения Галактики в районе Солнца равен приблизительно 275 млн. лет, а области, расположенные от центра Галактики дальше Солнца, совершают оборот медленнее: период вращения растет на 1 млн. лет при увеличении расстояния от центра Галактики приблизительно на 30 пс.

Кроме газа в пространстве между звездами имеются пылинки. Размеры их очень малы и располагаются они на значительных расстояниях друг от друга; среднее расстояние между пылинками- соседями составляет около ста метров. Поэтому средняя плотность пылевой материи Галактики примерно в 100 раз меньше общей массы газа и в 5000- 10 000 раз меньше общей массы всех звезд. Поэтому динамическая роль пыли в Галактике весьма незначительна. В Галактике пылевая материя сильнее поглощает голубые и синие лучи, чем желтые и красные.

В некотором отношении туман, в который погружена Галактика , существенно отличается от тумана, который мы наблюдаем на Земле. Отличие состоит в том, что вся масса пылевой материи имеет крайне неоднородную структуру. Она не распределена гладким слоем, а собрана в отдельные облака различной формы и размеров. Поэтому поглощение света в Галактике носит пятнистый характер.

Пылевая и газовая материи в Галактике обычно перемешаны, но пропорции их в различных местах различны. Встречаются газовые облака, в которых пыль преобладает. Для обозначения рассеянной в Галактике материи газа, пыли и смеси газа и пыли- употребляется общий термин « диффузная материя» .

Форма Галактики несколько отличается от диска тем, что в центральной части её имеется утолщение, ядро. Это ядро, хотя в нём сосредоточено большое число звёзд, долгое время не удавалось наблюдать, потому, что около плоскости симметрии Галактики наряду со светящейся материей звёзд имеются огромные темные облака пыли, поглощающие свет летящих за ними звёзд. Между Солнцем и центром Галактики расположено большое количество таких темных пылевых облаков различной формы и толщины, и они закрывают от нас ядро Галактики . Однако разглядеть ядро Галактики все-таки удалось.

В 1947 году американские астрономы Стеббинс и Уитфорд использовали совместно с телескопом фотоэлемент, чувствительный к инфракрасным лучам, и сумели обрисовать контуры ядра Галактики. В 1951 году советские астрономы В.И.Красовский и В.Б.Никонов получили фотографии ядра Галактики в инфракрасных лучах. Ядро Галактики оказалось не очень большим, его диаметр составлял около 1300пс. Но все-таки присутствие ядра в центральной области Галактики утолщает эту область, форму Галактики теперь можно сравнивать не просто с диском, а с дискообразным колесом, имеющим в центральной части утолщение - втулку.

Центр ядра Галактики - это центр всей нашей звездной системы. Материя в центре Галактики имеет высокую температуру и находится в состоянии бурного движения.


Внутри огромной звёздной системы - Галактики многие звёзды объединены в системы меньшей численности. Каждая из этих систем может рассматриваться как коллективный член Галактики.


7. Состав нашей Галактики


Самые маленькие коллективные члены Галактики - это двойные и кратные звёзды. Так называются группы из двух, трех, четырех и более звезд, в которых звёзды удерживаются близко друг к другу благодаря взаимному притяжению согласно закону всемирного тяготения. В двойных и кратных звёздах таких огромных тел – звёзд (солнц) два или несколько. Они притягивают друг друга, удерживают друг друга и, возможно, другие тела меньших масс внутри сравнительного небольшого объёма.

Расстояние, разделяющее компоненты двойных звезд, могут быть весьма различны. У тесных двойных они так близки друг друга, что происходят сложные физические процессы взаимодействия, связанные с явлениями приливов.

В широких парах расстояние между компонентами составляет десятки тысяч астрономических единиц, периоды обращений столь велики, что измеряются тысячелетиями и орбитальное движение при наблюдениях не удаётся обнаружить. Связуемость компонентов в таких системах определяют по их относительной близости на небе и по общности собственного движения.

Среди 30 ближайших к нам звёзд 13 входят в состав двойных и тройных систем. Измерение скорости движения звёзд по их орбитам позволило оценить массу звёзд, входящих в двойные системы. Оказалось, что и в этом отношении звёзды различны. Некоторые из них по массе уступают Солнцу, а другие превосходят его. При этом для всех звезд, в том числе и для Солнца, выполняется условие - чем больше светимость звезды, тем больше и её масса. Вдвое большей массе соответствуют приблизительно вдесятеро большая светимость, так что различие в светимостях у звезд гораздо большее, чем различие в массах.

Двойные и кратные звёзды часто состоят из звёзд различных типов, например, звезда белый гигант может комбинироваться с красным карликом, или желтая звезда средней светимости- с красным гигантом.

Более крупными коллективными членами Галактики, чем двойные и кратные звёзды, являются рассеянные звёздные скопления. Эти скопления содержат от нескольких десятков до нескольких сотен звёзд, самые крупные - до двух тысяч звёзд. Термин «рассеянное» скопление вызван тем, что сравнительно небольшая численность звезд в таких скоплениях не позволяет уверенно очертить форму скопления.

У рассеянных скоплений характерный состав. В них редко встречаются красные и желтые гиганты и совершенно нет красных и желтых сверхгигантов. В то же время белые и голубые гиганты - непременные члены рассеянных скоплений. Здесь чаще, чем в других местах Галактики, можно встретить и очень редкие звезды - белые и голубые сверхгиганты, т.е. звёзды высокой температуры и чрезвычайно высокой светимости, излучающие, каждая в сотни тысяч и даже миллионы раз больше, чем наше Солнце.

Рассеянные скопления располагаются очень близко к плоскости симметрии Галактики. Большинство из них лежит почти точно в этой плоскости. Число занесённых в каталоги рассеянных звёздных скоплений превышает в настоящее время тысячи. Далекие рассеянные скопления неразличимы, они недостаточно для этого богаты звёздами. Но при помощи телескопов можно отличить относительно близкие рассеянные скопления. Поэтому число имеющихся рассеянных скоплений в Галактике на самом деле на много больше тысячи и оценивается приблизительно в 30 тысяч. Если среднее число звёзд в одном рассеянном скоплении составляет 300 или несколько больше, то общее число звезд, входящих во все рассеянные скопления Галактики, равно приблизительно десяти миллионам.

Ещё более крупными коллективными членами Галактики являются шаровые звёздные скопления. Это очень богатые звёздные скопления, насчитывающие сотни тысяч, иногда свыше миллиона звёзд.

В центральных областях шарового скопления звёзды расположены очень тесно друг к другу. Из-за этого их изображения сливаются и определенные звёзды

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: