Xreferat.com » Рефераты по астрономии » Возникновение и эволюция Вселенной

Возникновение и эволюция Вселенной

ее масса больше солнечной, и несколько сот миллионов лет, если ее масса меньше солнечной. Звезд, массы которых меньше солнечной в 10 раз, очень мало.

Масса является одной из важных характеристик звезд. Любопытно отметить, что довольно распространены двойные звезды - образующиеся вблизи друг друга и вращающиеся вокруг общего центра. Их насчитывается от 30 до 50 процентов от общего числа звезд. Возникновение двойных, вероятно, связано с распределением момента количества движения исходного облака. Если у такой пары образуется планетная система, то движение планет может быть довольно замысловатым, а условия на их поверхностях будут сильно изменяться в зависимости от расположения планеты на орбите по отношению к светилам. Весьма возможно, что стационарных орбит, вроде тех, что могут существовать в планетных системах одинарных звезд (и существуют в Солнечной системе), не окажется совсем. Обычные, одинарные звезды в процессе своего образования начинают вращаться вокруг своей оси.

Другой важной характеристикой является радиус звезды. Существуют звезды - белые карлики, радиус которых не превышает радиуса Земли, существуют и такие - красные гиганты, радиус которых достигает радиуса орбиты Марса. Химический состав звезд по спектроскопическим данным в среднем такой: на 10000 атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 атом углерода, остальных элементов еще меньше. Из-за высоких температур атомы ионизируются, так что вещество звезды является в основном водородно-гелиевой плазмой - в целом электрически нейтральной смесью ионов и электронов. В зависимости от массы и химического состава исходного облака образовавшаяся звезда попадает на тот или иной участок, так называемой главной последовательности на диаграмме Герцшпрунга-Рессела. Последняя представляет собой координатную плоскость, на вертикальной оси которой откладывается светимость звезды (т.е. количество энергии, излучаемой ей в единицу времени), а на горизонтальной - ее спектральный класс (характеризующий цвет звезды, который в свою очередь зависит от температуры ее поверхности). При этом "синие" звезды более горячие, чем "красные", а наше "желтое" Солнце имеет промежуточную температуру поверхности порядка 6000 градусов) (рис.2). Традиционно спектральные классы от горячих к холодным обозначаются буквами O,B,A,F,G,K,M , при этом каждый класс делится на десять подклассов. Так, наше Солнце имеет спектральный класс G2. На диаграмме видно, что большинство звезд располагается вдоль плавной кривой, идущей из левого верхнего угла в правый нижний. Это и есть главная последовательность. Наше Солнце также находится на ней. По мере "выгорания" водорода в центре звезды ее масса немного меняется и звезда немного смещается вправо вдоль главной последовательности. Звезды с массами порядка солнечной находятся на главной последовательности 10-15 млрд. лет (наше Солнце находится на ней уже около 4,5 млрд. лет). Постепенно энергии в центре звезды выделяется все меньше, давление падает, ядро сжимается, и температура в нем возрастает. Ядерные реакции протекают теперь только в тонком слое на границе ядра внутри звезды. В результате звезда в целом начинает "разбухать", а ее светимость увеличиваться. Звезда сходит с главной последовательности и перебирается в правый верхний угол диаграммы Герцшпрунга-Рессела, превращаясь в так называемый "красный гигант". После того, как температура сжимающегося (теперь уже гелиевого) ядра красного гиганта достигнет 100-150 млн. градусов, начинается новая ядерная реакция синтеза - превращение гелия в углерод. Когда и эта реакция исчерпает себя, происходит сброс оболочки - существенная часть массы звезды превращается в планетарную туманность. Горячие внутренние слои звезды оказываются "снаружи", и их излучение "раздувает" отделившуюся оболочку. Через несколько десятков тысяч лет оболочка рассеивается, и остается небольшая очень горячая плотная звезда. Медленно остывая, она переходит в левый нижний угол диаграммы и превращается в "белый карлик". Белые карлики, по-видимому, представляют собой заключительный этап нормальной эволюции большинства звезд.

Но встречаются и аномалии. Некоторые звезды время от времени вспыхивают, превращаясь в новые звезды. При этом они каждый раз теряют порядка сотой доли процента своей массы. Из хорошо известных звезд можно упомянуть новую в созвездии Лебедя, вспыхнувшую в августе 1975 года и пробывшую на небосводе несколько лет. Но иногда случаются и вспышки сверхновых - катастрофические события, ведущие к полному разрушению звезды, при которых за короткое время излучается энергии больше, чем от миллиардов звезд той галактики, к которой принадлежит сверхновая. Такое событие зафиксировано в китайских хрониках 1054 года: на небосводе появилась такая яркая звезда, что ее можно было видеть даже днем. Результат этого события известен нам теперь как Крабовидная туманность (рис.3), "медленное" распространение которой по небу мы наблюдаем в последние 300 лет. Скорость разлета ее газов в результате взрыва составляет порядка 1500 м/с, но она находится очень далеко. Сопоставляя скорость разлета с видимым размером Крабовидной туманности, мы можем рассчитать время, когда она была точечным объектом, и найти его место на небосклоне - эти время и место соответствуют времени и месту появления звезды, упомянутой в хрониках.

Если масса звезды, оставшейся после сброса оболочки "красным гигантом" превосходит солнечную в 1,2-2,5 раза, то, как показывают расчеты, устойчивый "белый карлик" образоваться не может. Звезда начинает сжиматься, и ее радиус достигает ничтожных размеров в 10 км, а плотность вещества такой звезды превышает плотность атомного ядра. Предполагается, что такая звезда состоит из плотно упакованных нейтронов, поэтому она так и называется - нейтронная звезда. Согласно этой теоретической модели у нейтронной звезды имеется сильное магнитное поле, а сама она вращается с огромной скоростью - несколько десятков или сотен оборотов в секунду. И только обнаруженные (именно в Крабовидной туманности) в 1967 году пульсары - точечные источники импульсного радиоизлучения высокой стабильности - обладают как раз такими свойствами, каких следовало ожидать от нейтронных звезд. Наблюдаемое явление подтвердило концепцию.

Если же оставшаяся масса еще больше, то гравитационное сжатие неудержимо сжимает вещество и дальше. Вступает в действие одно из предсказаний общей теории относительности, согласно которому вещество сожмется в точку. Это явление называется гравитационным коллапсом, а его результат - "черной дырой". Это название связано с тем, что гравитационная масса такого объекта настолько велика, силы притяжения настолько значительны, что не только какое-либо вещественное тело не может покинуть окрестность черной дыры, но даже свет - электромагнитный сигнал - не может ни отразиться, ни выйти "наружу". Таким образом, непосредственно наблюдать черную дыру невозможно, можно лишь догадаться о ее существовании по косвенным эффектам. Двигаясь в пространстве по направлению к черной дыре (о которой мы пока ничего не знаем), можно обнаружить, что рисунок созвездий, расположенных прямо по курсу начинает меняться. Это связано с тем, что свет, идущий от звезд и проходящий неподалеку от черной дыры, отклоняется ее тяготением. По мере приближения к дыре возникнет пустая область, окруженная светящимися точками-звездами, в том числе и такими, которых раньше не наблюдалось. Свет от некоторых звезд может, проходя мимо дыры, поворачивать вокруг нее, а затем попадать в приемные устройства наблюдателя. Таким образом, одна звезда может давать несколько изображений в разных местах. Все это, конечно, противоречит как нашему жизненному опыту, так и классическим представлениям, согласно которым свет распространяется прямолинейно. Однако в пользу существования черных дыр говорит целый ряд косвенных астрономических наблюдений, а отклонение света под действием гравитационного притяжения регистрируется уже при прохождении луча мимо такого "нормального" объекта, как Солнце.

Теперь можно перейти к теме возникновения планет.

Движение планет в Солнечной системе упорядочение: они вращаются вокруг Солнца в одном направлении и почти в одной плоскости. Расстояния от одной планеты до другой возрастают закономерно. Орбиты планет близки к окружностям, что и позволяет им вращаться вокруг Солнца миллиарды лет, не сталкиваясь друг с другом.

Если движение планет подчиняется одному и тому же порядку, то и процесс их образования должен быть единым. Это показали в XVIII в. Иммануил Кант и Пьер Лаплас. Они пришли к выводу, что на месте планет вокруг Солнца первоначально вращалась туманность из газа и пыли.

Но откуда взялась эта туманность? И каким образом газ и пыль превратились в крупные планетные тела? Эти вопросы оставались нерешёнными в космогонии XIX и начала XX в. Камнем преткновения была и проблема момента количества движения планет. Масса всех планет системы в 750 раз меньше массы Солнца. При этом на долю Солнца приходится лишь 2% общего момента количества движения, а остальные 98% заключены в орбитальном вращении планет.

Вплотную этими проблемами наука занялась лишь во второй половине XX в. Почти до конца 80-х гг. раннюю историю нашей планетной системы приходилось "воссоздавать" лишь на основе данных о ней самой. И только к 90-м гг. стали доступны для наблюдений невидимые ранее объекты - газопылевые диски, вращающиеся вокруг некоторых молодых звёзд, сходных с Солнцем.

Газопылевую туманность, в которой возникли планеты, их спутники, мелкие твёрдые тела - метеориты, астероиды и кометы, называют протопланетным (или допланетным) облаком. Планеты вращаются вокруг Солнца почти в одной плоскости, а значит, и само газопылевое облако имело уплощённую, чечевицеобразную форму, поэтому его называют ещё диском. Учёные полагают, что и Солнце, и диск образовались из одной и той же вращающейся массы межзвёздного газа - протосолнечной туманности.

Начальная фаза протосолнечной туманности - предмет исследования астрофизики и звёздной космогонии. Изучение же её эволюции, приведшей к появлению планет, - центральная задача космогонии планетной.

Возраст Солнца насчитывает чуть меньше 5 млрд. лет. Возраст древнейших метеоритов почти такой же: 4,5-4,6 млрд. лет. Столь же стары и рано затвердевшие части лунной коры. Поэтому принято считать, что Земля и другие планеты сформировались 4,6 млрд. лет назад. Солнце относится к звёздам так называемого второго поколения Галактики. Самые старые её звёзды значительно (на 8-10 млрд. лет) старше Солнечной системы. В Галактике есть и молодые звёзды, которым всего 100 тыс. - 100 млн лет (для звезды это совсем юный возраст). Многие из них похожи на Солнце, и по ним можно судить о начальном состоянии нашей системы. Наблюдая несколько десятков подобных объектов, учёные пришли к следующим выводам.

Размер допланетного облака Солнечной системы должен был превышать радиус орбиты последней планеты - Плутона. Химический состав молодого Солнца и окружавшего его газопылевого облака-диска, по-видимому, был одинаков. Общее содержание водорода и гелия достигало в нём 98%. На долю всех остальных, более тяжёлых элементов приходилось лишь 2%; среди них преобладали летучие соединения, включающие углерод, азот и кислород: метан, аммиак, вода, углекислота. Другими методами и в других отраслях знания.

Расчёты показывают, что в пределах орбиты Плутона, т. е. диска радиусом 40 а. е., общая масса всех планет вместе с утерянными к настоящему времени летучими веществами должна была составлять 3-5% от массы Солнца. Такую модель облака называют облаком умеренно малой массы, она подтверждается и наблюдениями околозвёздных дисков.

Если бы масса облака была сопоставима с массой центрального тела, то должна была бы образоваться звезда - компаньон Солнца (или же надо найти объяснение выбросу огромных излишков вещества из Солнечной системы).

Наименее изучена самая ранняя стадия - выделение протосолнечной туманности из гигантского родительского молекулярного облака, принадлежащего Галактике. В 40-х гг. академик Отто Юльевич Шмидт выдвинул ставшую общепринятой гипотезу об образовании Земли и других планет из холодных твёрдых допланетных тел - планетезымалей. Распространённая ранее точка зрения, что планеты"- это небольшие остатки некогда раскалённых гигантских газовых сгустков солнечного состава, потерявших летучие вещества, пришла в противоречие с науками о Земле.

Земля, как показывают исследования, никогда не проходила через огненно-жидкое, т. е. полностью расплавленное состояние. Исследуя шаг за шагом эволюцию допланетного диска, учёные получили последовательность основных этапов развития газопылевого диска, окружавшего Солнце, в систему планет.

Первоначальный размер облака превышал современный размер планетной системы, а его состав соответствовал тому, который наблюдается в межзвёздных туманностях: 99% газа и 1% пылевых частиц размерами от долей микрометра до сотен микрометров. Во время коллапса, т. е. падения газа с пылью на центральное ядро (будущее Солнце), вещество сильно разогревалось, и межзвёздная пыль могла частично или полностью испариться. Таким образом, на первой стадии облако состояло почти целиком из газа, притом хорошо перемешанного благодаря высокой турбулентности - разнонаправленному, хаотичному движению частиц.

По мере формирования диска турбулентность стихает. Это занимает немного времени - около 1000 лет. При этом газ охлаждается и в нём вновь образуются твёрдые пылевые частицы. Таков первый этап эволюции диска.

Для остывающего допланетного облака характерно очень низкое давление - менее десятитысячной доли атмосферы. При таком давлении вещество из газа конденсируется непосредственно в твёрдые частички, минуя жидкую фазу. Первыми конденсируются самые тугоплавкие соединения кальция, магния, алюминия и титана, затем магниевые силикаты, железо и никель. После этого в газовой среде остаются лишь сера, свободный кислород, азот, водород, все инертные газы и некоторые летучие элементы.

В процессе конденсации становятся активными пары воды, окисляющие железо и образующие гидраризованные соединения. Основные же космические элементы - водород и гелий - остаются в газообразной форме. Для их конденсации потребовались бы температуры, близкие к абсолютному нулю, ни при каких условиях недостижимые в облаке.

Химический состав пылинок в допланетном диске определялся температурой, которая падала по мере удаления от Солнца. К сожалению, рассчитать изменение температуры в допланетном облаке очень трудно. Химический состав планет земной группы показывает, что они состоят в основном из веществ, конденсировавшихся при высоких температурах. В составе ближней части пояса астероидов преобладают каменистые тела. По мере удаления от Солнца в поясе астероидов увеличивается число тел, которые содержат обогащённые водой минералы и некоторые летучие вещества. Их удалось обнаружить в метеоритах, являющихся осколками астероидов. Среди малых планет, по-видимому, нет или очень немного ледяных тел. Следовательно, граница конденсации водяного льда должна была проходить за ними, не ближе внешнего края пояса астероидов - в три с лишним раза дальше от Солнца, чем Земля.

В то же время крупнейшие спутники Юпитера - Ганимед и Каллисто - наполовину состоят из воды. Они находятся на гораздо большем расстоянии от Солнца, чем пояс астероидов. Значит, водяной лёд конденсировался во всей зоне образования Юпитера. Начиная с орбиты Юпитера и дальше в допланетном облаке должны были преобладать ледяные пылинки с вкраплениями более тугоплавких веществ. В области внешних планет, при ещё более низкой температуре, в составе пылинок оказались льды метана, аммиака, твёрдая углекислота и другие замёрзшие летучие соединения. Подобный состав в настоящее время имеют кометные ядра, залетающие в окрестности Земли с далёкой периферии Солнечной системы.

Первые конденсаты - пылинки, льдинки - сразу после своего появления начинали двигаться сквозь газ к центральной плоскости облака. Чем крупнее были частицы, тем быстрее они оседали, так как при своём движении более крупные частицы (в отличие от мелких) встречают меньшее сопротивление газа на единицу их массы.

На втором этапе завершалось образование тонкого пылевого слоя - пылевого субдиска - в центральной плоскости облака. Расслоение облака сопровождалось увеличением размеров частиц до нескольких сантиметров. Сталкиваясь друг с другом, частицы слипались, при этом скорость их движения к центральной плоскости увеличивалась и рост тоже ускорялся.

В некоторый момент плотность пыли в субдиске приблизилась к критическому значению, превысив плотность газа уже в десятки раз. При достижении критической плотности пылевой слой делается гравитационно неустойчивым. Даже очень слабые уплотнения, случайно возникающие в нём, не рассеиваются, а, наоборот, со временем сгущаются. Сначала в нём могла образоваться система колец, которые, уплотняясь, также теряли свою устойчивость и на третьем этапе эволюции диска распадались на множество отдельных мелких сгустков. Из-за вращения, унаследованного от вращающегося диска, эти сгустки не могут сразу сжаться до плотности твёрдых тел. Но, сталкиваясь друг с другом, они объединяются и всё более уплотняются. На четвёртом этапе образуется рой допланетных тел размером около километра; первоначальное число их достигает многих миллионов.

Описанный путь образования тел возможен, если пылевой субдиск очень плоский: его толщина должна быть во много раз меньше диаметра. Такие объекты существуют и ныне, например кольца Сатурна.

Другой путь формирования допланетных тел помимо гравитационной конденсации - это их прямой рост при столкновениях мелких частиц. Они могут слипаться лишь при небольших скоростях соударений, при достаточно разрыхлённой поверхности контакта или в случае повышенной силы сцепления.

Такие тела, каким бы из двух путей они ни возникли, послужили строительным материалом для формирования планет, спутников и метеорных тел.

Учёные предполагают, что допланетные тела, образовавшиеся на периферии облака при очень низкой температуре, сохранились до сих пор в кометном облаке, куда они были заброшены гравитационными возмущениями планет-гигантов.

Образование допланетных тел в газопылевом облаке продолжалось десятки тысяч лет - крайне незначительный срок в космогонической шкале времени. Дальнейшее объединение тел в планеты - аккумуляция планет - гораздо более длительный процесс, занявший сотни миллионов лет. Детально восстановить его очень трудно: последующая геологическая стадия, длящаяся уже более 4 млрд. лет, к настоящему времени стёрла особенности начального состояния планет.


Допланетный рой представлял собой сложную систему большого числа тел планетезималей. Они обладали неодинаковыми массами и двигались с разными скоростями. Помимо общей для всех тел на данном расстоянии от Солнца скорости обращения по орбите эти тела имели дополнительные индивидуальные скорости со случайно распределёнными направлениями. В допланетном облаке самыми многочисленными всегда были мелкие частицы и тела. Меньшую долю составляли тела промежуточных размеров. Крупных тел, сравнимых с Луной или Марсом, было совсем мало.


Эволюция облака вела к тому, что именно в немногих крупных телах сосредоточивалась основная масса всего планетного вещества. Эта иерархия сохранилась и до наших дней: совокупная масса планет намного выше общей массы всех малых тел - спутников, астероидов, комет и пылевых частиц.


Крупные тела своим гравитационным влиянием постепенно увеличивают хаотические скорости планетезималей. Каждое сближение двух тел меняет характер их движения по околосолнечным орбитам. Как правило, орбиты становятся более вытянутыми и более наклонёнными к центральной плоскости. Таким образом, в течение этого этапа идёт "раскачка" системы от очень плоского диска к более утолщённому. При этом тела приобретают тем большие хаотические скорости, чем меньше их масса, и наоборот.

Растут тела очень неравномерно. Самое крупное из них в любой кольцевой зоне, где орбиты остальных тел пересекаются с его орбитой, получает привилегированное положение и в перспективе может стать зародышем планеты.

Роль соударений можно пояснить на примере современного пояса астероидов, где последствия ударов неодинаковы для разных тел. В нынешнее время хаотические скорости астероидов составляют примерно 5 км/с; с такими же скоростями они сталкиваются с мелкими телами. Энергия удара при падении тела на поверхность астероида обычно так велика, что разрушается не только само упавшее тело, но и часть астероида. Образуется ударный кратер, выбросы из которого разлетаются со скоростями сотни метров в секунду. Разлетающееся вещество вновь падает на поверхность астероида только в том случае, если он обладает достаточным тяготением.

Все астероиды современного пояса теряют массу при столкновениях. Лишь несколько самых больших (с радиусами более 200 км) в лучшем случае способны сохранить свою массу. Точно так же и столкновения планетезималей приводили к росту лишь наиболее крупных из них.

Внутреннюю часть Солнечной системы образуют планеты земной группы - Меркурий, Венера, Земля и Марс. Состав этих планет свидетельствует, что их рост происходил в отсутствие лёгких газов за счёт каменистых частиц и тел, содержавших различное количество железа и других металлов.

Главное условие роста тел при столкновениях - их низкие относительные скорости на начальном этапе. Чтобы тела достигли километровых размеров, хаотические скорости не должны превышать 1 м/с. Это возможно, только если нет сильного воздействия извне. В зоне роста планет земной группы внешние воздействия были слабы, лишь в зоне Марса сказалось влияние Юпитера, замедлявшее его рост и уменьшавшее массу. В поясе астероидов, наоборот, явно прослеживается возмущающее влияние соседней планеты-гиганта Юпитера. Стадия объединения планетезималей в планеты и их роста длилась более 100 млн лет.

Период диссипации (рассеяния) газа из зоны земных планет продолжался не более 10 млн лет. В основном газ выдувался солнечным ветром, т. е. потоками заряженных частиц (протонов и электронов), выбрасываемых с поверхности Солнца со скоростями сотни километров в секунду.

Солнечный ветер очистил от газа не только область планет земной группы, но и более отдалённые пространства планетной системы. Однако планеты-гиганты Юпитер и Сатурн уже успели вобрать в себя огромное количество вещества, подавляющую часть массы всей планетной системы.

Как же формировались планеты-гиганты? Их зародыши могли возникать двумя путями: через гравитационную неустойчивость газовых масс допланетного диска или путём нарастающего захвата газовой атмосферы на массивном ядре из планетезималей.

В первом случае масса допланетного облака должна была составлять значительную долю массы Солнца, а состав планет-гигантов должен совпадать с солнечным. Ни то ни другое не соответствует фактам. Исследования последних лет показали, что в ядрах Юпитера и Сатурна, по-видимому, присутствуют элементы тяжелее водорода и гелия, составляющие по меньшей мере 5-6% массы планеты. Это существенно больше, чем можно было бы ожидать при солнечном содержании химических элементов. Значит, более вероятен второй путь: сначала, как и у планет земной группы, образуется массивное ядро-зародыш из каменистых и ледяных планетезималей, а затем оно наращивает водородно-гелиевую оболочку.

Процесс присоединения вещества называют аккрецией. Начиная с одной-двух масс Земли, тело может не только удерживать газовую атмосферу на поверхности, но и в ускоряющемся темпе захватывать новые порции газа, если на пути его движения имеется газовая среда. Аккреция прекращается лишь тогда, когда газ полностью исчерпан. Продолжительность этого процесса намного короче, чем стадия образования ядра-зародыша. По расчётам учёных, рост ядра Юпитера длился десятки, а ядра Сатурна - сотни миллионов лет.

Пока ядро, погружённое в газ, невелико, оно присоединяет лишь небольшую атмосферу, находящуюся в равновесии. Но при некоторой критической массе (2-3 массы Земли) газ начинает в возрастающем темпе выпадать на тело, сильно увеличивая его массу. На стадии быстрой аккреции всего за несколько сот лет Юпитер вырос до массы, превышающей 50 масс Земли, поглотив газ из сферы своего гравитационного влияния. Затем скорость аккреции упала, так как газ мог поступать к планете лишь путём медленной диффузии из более широкой зоны диска.

Одновременно Юпитер продолжал расти за счёт твёрдых планетезималей, а те, что не были им поглощены, могли быть отброшены его тяготением либо внутрь, в зону астероидов и зону Марса, либо прочь из Солнечной системы. Юпитер сообщал твёрдым телам скорости больше скорости освобождения: для того чтобы покинуть Солнечную систему с орбиты Юпитера, достаточно скорости всего 18 км/с, а тело, пролетающее от Юпитера на расстоянии нескольких его радиусов, разгоняется до десятков километров в секунду.

Сатурн формировался аналогичным образом. Но его ядро росло не так быстро и достигло критической массы позднее. К этому времени из-за действия солнечного ветра газа осталось меньше, чем в зоне Юпитера к началу его аккреции. Вот почему по сравнению с Юпитером Сатурн содержит в несколько раз больше конденсируемого вещества и ещё сильнее отличается по составу от Солнца.

Уран и Нептун росли ещё медленнее, а газ из внешней зоны диссипировал быстрее. Когда эти планеты достигли критической массы, газа в их зонах почти не осталось. Поэтому на долю водорода и гелия приходится лишь около 10% массы Урана, Нептун же содержит их ещё меньше. Главными составляющими этих тел являются вода, метан и аммиак, а также окислы тяжёлых элементов; газы входят в планетные атмосферы.

Двухступенчатая схема образования планет-гигантов (формирование ядер из конденсированных веществ и газовая аккреция на эти ядра) подтверждается фактами. Во-первых, выяснилось, что современные массы ядер Юпитера и Сатурна, а также массы Урана и Нептуна без их атмосфер имеют близкие значения: 14-20 масс Земли, тогда как доля газов - водорода и гелия - в них закономерно уменьшается по мере удаления от Солнца. Во-вторых, существуют такие "вещественные доказательства" ранней истории планет-гигантов, как их спутники и кольца. Аккреция газа на планеты сопровождается образованием вокруг них газопылевых дисков, в которых формируются спутники.

На стадии быстрой аккреции освобождалось огромное количество энергии, и верхние слои планет сильно нагревались. Максимальная температура поверхности Юпитера и Сатурна, по-видимому, составляла несколько тысяч градусов - почти как у звёзд. В диске Юпитера, где формировались его спутники, на близких расстояниях от планеты температура была выше точки конденсации водяного пара, а на более далёких - ниже. И действительно, ближние спутники Юпитера, включая Ио и Европу, состоят из каменистых веществ, а более отдалённые - Ганимед и Каллисто - наполовину из водяного льда. У Сатурна в диске температура была ниже, поэтому лёд там конденсировался на всех расстояниях (частицы колец Сатурна и все его близкие спутники - ледяные).


Список литературы :

  • Журнал "Вокруг света" февраль 2004г., стр. 56-65

  • Зингель Ф.Ю. Астрономия: все развития, 1988

  • Левитан Е.П. Астрономия. Просвещение, 1994/Левитан Е.П. Твоя Вселенная. Просвещение 1995

  • Чернин А.Д. Звезды и физика. М.:Наука, 1994.

  • Шкловский И.С. Звезды: их рождение, жизнь, смерть. М., 1984

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: