Xreferat.com » Рефераты по астрономии » Что такое звёзды

Что такое звёзды

изменения. Они происходят в течение существования звезды, а это десятки или сотни миллионов лет, поэтому человек не может быть очевидцем происходящего. У некоторых классов звёзд происходящие изменения фиксируются в короткие промежутки времени, например в течение нескольких месяцев, дней или части суток. Происходящие изменения звезды, её световые потоки можно многократно измерить в течение последующих ночей.

Измерения.

На самом деле эта проблема не так проста, как кажется на первый взгляд. При проведении измерений необходимо учитывать атмосферные условия, а они меняются, причём иногда значительно в течение одной ночи. В связи с этим данные о световых потоках звёзд существенно разнятся.

Очень важно уметь отличить настоящие изменения светового потока, а они непосредственно связаны с блеском звезды, от кажущихся, они объясняются изменением атмосферных условий.

Для этого рекомендуется провести сравнение световых потоков наблюдаемой звезды с другими звёздами – ориентирами, видимыми в телескоп. Если изменения кажущиеся, т.е. связаны с изменением атмосферных условий, они коснуться всех наблюдаемых звёзд.

Получить верные данные о состоянии звезды на коком-то этапе – это первая ступень. Далее следует составить «кривую блеска» для фиксирования возможных изменений блеска. Она будет показывать изменение звёздной величины.

Переменные или нет.

Звёзды, звёздная величина которых непостоянна, называют переменными. У некоторых из них переменчивость лишь кажущаяся. В основном это звёзды, относящиеся к системе двойных. При этом, когда орбитальная плоскость системы более или менее совпадает с лучом зрения наблюдателя, ему может казаться, что одна из двух звёзд полностью или частично затмевается другой и является менее яркой. В этих случаях изменения периодичны, периоды изменения блеска затменных звёзд повторяются с интервалом, совпадающим с орбитальным периодом двойной системы звёзд. Эти звёзды называются «затменные переменные».

Следующий класс переменных звёзд – «внутренние переменные». Амплитуды колебаний блеска этих звёзд зависят от физических параметров звезды, например от радиуса и температуры. В течение долгих лет астрономы вели наблюдения за изменчивостью переменных звёзд. Только в нашей Галактике зафиксировано 30000 переменных звёзд. Их разделили на две группы. К первой относятся «эруптивные переменные звёзды». Им свойственны однократные или повторяющиеся вспышки. Изменения звёздных величин эпизодичны. К классу «эруптивных переменных», или взрывных, относятся также новые и сверхновые. Ко второй группе – все остальные.

Цефеиды.

Существуют переменные звёзды, блеск которых меняется строго периодически. Изменения происходят через определённые промежутки времени. Если составить кривую блеска, она чётко зафиксирует регулярность изменений, при этом форма кривой отметит максимальные и минимальные характеристики. Разница между максимальным и минимальным колебаниями определяет большое пространство между двумя характеристиками. Звёзды такого типа относятся к «переменным пульсирующим». По кривой блеска можно сделать вывод, что блеск звезды возрастает быстрее, чем убывает.

Переменные звёзды подразделяются на классы. За критерий берётся звезда-прототип, именно она даёт название классу. В качестве примера можно привести Цефеиды. Это название происходит от звезды Цефея. Это наиболее простой критерий. Есть и другой – звёзды подразделяются по спектрам.

Переменные звёзды можно разделить на подгруппы по разным критериям.

ДВОЙНЫЕ ЗВЁЗДЫ.

Звёзды на небесном своде существуют в виде скоплений, ассоциация, а не как единичные тела. Звёздные скопления могут быть усеяны звёздами очень густо или нет.

Между звёздами могут существовать и более тесные связи, речь идёт о двойных системах, как их называют астрономы. В паре звёзд эволюция одной непосредственно влияет и на вторую.

Открытие.

Открытие двойных звёзд, в настоящее время их именно так называют, стало одним из первых открытий, осуществлённых при помощи астрономического бинокля. Первой парой этого типа звёзд стала Мицар из созвездия Большой Медведицы. Открытие сделал итальянский астроном Риччоли. Учитывая огромное количество звёзд во Вселенной, учёные пришли к выводу, что Мицар среди них не единственная двойная система, и оказались правы, вскоре наблюдения подтвердили эту гипотезу. В 1804 году известный астроном Вильям Гершель, посвятивший 24 года научным наблюдениям, опубликовал каталог, содержащий описание примерно 700 двойных звёзд. Вначале учёные не знали точно, связаны ли физически друг с другом компоненты двойной системы.

Некоторые светлые умы полагали, что на двойные звёзды действует звёздная ассоциация в целом, тем более в паре блеск составляющих был неодинаков. В связи с этим создавалось впечатление, что они находятся не рядом. Для выяснения истинного положения тел было необходимо измерить параллактические смещения звёзд. Этим и занялся Гершель. К величайшему удивлению, параллактическое смещение одной звезды по отношению к другой при измерении дало неожиданный результат. Гершель заметил, что вместо симметрического колебания с периодом в 6 месяцев каждая звезда следует по сложному эллипсоидному пути. В соответствии с законами небесной механики два тела, связанных силой притяжения, двигаются по эллиптической орбите. Наблюдения Гершеля подтвердили тезис о том, что двойные звёзды связаны физически, то есть силами тяготения.

Классификация двойных звёзд.

Различают три основных класса двойных звёзд: визуально-двойные, двойные фотометрические и спектрально-двойственные. Эта классификация не отражает в полной мере внутренние различия классов, но даёт представление о звёздной ассоциации.

Двойственность визуально-двойных звёзд хорошо видна в телескоп по мере их движения. В настоящее время идентифицировано около 70000 визуально-двойных, но только у 1% из них была точно определена орбита.

Такая цифра (1%) не должна удивлять. Дело в том, что орбитальные периоды могут составлять несколько десятков лет, если не целые века. А выстроить путь по орбите – очень кропотливый труд, требующий проведения многочисленных расчётов и наблюдений из разных обсерваторий. Очень часто учёные располагают лишь фрагментами движения по орбите, остальной путь они восстанавливают дедуктивным методом, используя имеющиеся данные. Следует иметь в виду, что орбитальная плоскость системы может быть наклонена к лучу зрения. В таком случае воссозданная орбита (видимая) будет значительно отличаться от истинной.

Если определена истинная орбита, известны период обращения и угловое расстояние между двумя звёздами, можно, применив третий закон Кеплера, определив сумму масс компонентов системы. Расстояние двойной звезды до нас при этом тоже должно быть известно.

Двойные фотометрические звёзды.

О двойственности этой системы звёзд можно судить лишь по периодическим колебаниям блеска. При движении такие звёзды переменно загораживают друг друга. Их также называют «затменно-двойные звёзды». У этих звёзд плоскости орбит близки к направлению луча зрения. Чем большую площадь занимает затмение, тем более выражен блеск. Если проанализировать кривую блеска двойных фотометрических звёзд, можно определить наклон орбитальной плоскости.

С помощью кривой блеска можно определить и орбитальный период системы. Если зафиксированы, например, два затмения, кривая блеска будет иметь два снижения (минимума). Период времени, за который фиксируются три последовательных снижения по кривой блеска, соответствует орбитальному периоду.

Периоды двойных фотометрических звёзд значительно короче по сравнению с периодами визуально-двойных звёзд и составляют срок несколько часов или несколько дней.


Спектрально-двойственные звёзды.

С помощью спектроскопии можно подметить расщепление спектральных линий вследствие эффекта Доплера. Если один из компонентов представляет собой слабую звезду, то наблюдается только периодическое колебание положений одиночных линий. Этот способ используют в случае, когда компоненты двойной звезды очень близки между собой и их сложно идентифицировать при помощи телескопа как визуально-двойные звёзды. Двойные звёзды, определяемые с помощью спектроскопа и эффекта Доплера, называются спектрально-двойственные. Не все двойные звёзды являются спектральными. Два компонента двойных звёзд могут отдаляться и приближаться в радиальном направлении.

Наблюдения свидетельствуют о том, что двойные звёзды встречаются в основном в нашей Галактике. Сложно определить процентное соотношение двойных и одинарных звёзд. Если действовать методом вычитания и из всего звёздного населения вычесть число идентифицированных двойных звёзд, можно сделать вывод, что они составляют меньшинство. Этот вывод может быть ошибочным. В астрономии есть понятие «эффект отбора». Для определения двойственности звёзд надо идентифицировать их основные характеристики. Для этого необходимо хорошее оборудование. Иногда бывает сложно определить двойные звёзды. Например, визуально-двойные звёзды не всегда можно увидеть на большом удалении от наблюдателя. Иногда угловое расстояние между компонентами не фиксируется телескопом. Для того чтобы зафиксировать фотометрические и спектрально-двойственные звёзды, их блеск должен быть достаточно сильным для сбора модуляций светового потока и тщательного измерения длины волн в спектральных линиях.

Число звёзд, подходящих по всем параметрам для исследований, не так велико. По данным теоретических разработок, можно предположить, что двойные звёзды составляют от 30% до 70% звёздного населения.

НОВЫЕ ЗВЁДЫ.

Переменные взрывные звёзды состоят из белого карлика и звезды Главной последовательности, как Солнце, или постпоследовательности, как красный гигант. Обе звезды следуют по узкой орбите с периодичностью в несколько часов. Они находятся на близком расстоянии друг от друга, в связи с чем они тесно взаимодействуют и вызывают эффектные явления.

С середины XIX века учёные фиксируют на оптической полосе переменных взрывных звёзд преобладание фиолетового цвета в определённое время, это явление совпадает с наличием пиков на кривой блеска. По этому принципу звёзды разделили на несколько групп.

Классические новые звёзды.

Классические новые звёзды отличаются от переменных взрывных тем, что их оптические вспышки не имеют повторяющегося характера. Амплитуда кривой их блеска выражена чётче, и подъём к максимальной точке происходит значительно быстрее. Обычно они достигают максимального блеска за несколько часов, за этот период времени новая звезда приобретает звёздную величину равную примерно 12, то есть световой поток увеличивается на 60000 единиц.

Чем медленнее происходит процесс подъёма к максимуму, тем менее заметно и изменение блеска. Новая звезда недолго остаётся в положении «максимум», обычно этот период занимает время от нескольких дней до нескольких месяцев. Затем блеск начинает уменьшаться, сначала быстро, затем медленнее до обычного уровня. Длительность этой фазы зависит от разных обстоятельств, но её продолжительность составляет не менее нескольких лет.

У новых классических звёзд все эти явления сопровождаются неконтролируемыми термоядерными реакциями, происходящими в поверхностных слоях белого карлика, именно там находится «позаимствованный» водород от второго компонента звезды. Новые звёзды всегда двойные, один из компонентов обязательно – белый карлик. Когда масса компонента звезды перетекает к белому карлику, слой водорода начинает сжиматься и разогревается, соответственно температура повышается, гелий разогревается. Всё это происходит быстро, резко, в результате имеет место вспышка. Излучающая поверхность увеличивается, блеск звезды становится ярким, на кривой блеска фиксируется всплеск.

Во время активной фазы вспышки новая звезда достигает максимального блеска. Максимальная абсолютная звёздная величина составляет порядка от -6 до -9. у новых звёзд эта цифра достигается медленнее, у переменных взрывных звёзд – быстрее.

Новые звёзды существуют и в других галактиках. Но то, что мы наблюдаем, это лишь их видимая звёздная величина, абсолютную определить нельзя, так как неизвестно их точное расстояние до Земли. Хотя в принципе можно узнать абсолютную звёздную величину новой, если она находится в максимальной близости от другой новой звезды, расстояние до которой известно. Максимальная абсолютная величина высчитывается по уравнению:

M=-10.9+2.3log (t).

t – это время, за которое кривая блеска новой звезды падает до 3 звёздных величин.

Карликовые новые звёзды и повторяющиеся новые.

Ближайшими родственниками новых звёзд являются карликовые новые звёзды, их прототип «U Близнецов». Их оптические вспышки практически аналогичны вспышкам новых звёзд, но имеются различия в кривых блесках: их амплитуды меньше. Отмечаются различия и в повторяемости вспышек – у новых карликовых звёзд они случаются более или менее регулярно. В среднем раз в 120 дней, но иногда и через несколько лет. Оптические вспышки новых длятся от нескольких часов до нескольких дней, после чего за несколько недель блеск уменьшается и, наконец, достигает обычного уровня.

Существующую разницу можно объяснить различными физическими механизмами, провоцирующими оптическую вспышку. В «U Близнецов» вспышки происходят из-за внезапного изменения процентного соотношения материи на белом карлике – её увеличения. В результате имеет место огромный выброс энергии. Наблюдения за карликовыми новыми звёздами в фазе затмения, то есть когда белый карлик и диск, окружающий его, закрываются звездой – компонентом системы, точно свидетельствуют о том, что именно белый карлик, вернее, его диск является источником света.

Повторяющиеся новые звёзды представляют собой нечто среднее между классическими новыми и карликовыми новыми звёздами. Как следует из названия, их оптические вспышки повторяются регулярно, что роднит их с новыми карликовыми звёздами, но происходит это через несколько десятков лет. Усиление блеска во время вспышки более выражено и составляет около 8 звёздных величин, эта черта приближает их к классическим новым звёздам.

РАССЕЯНЫЕ ЗВЁЗДНЫЕ СКОПЛЕНИЯ.

Рассеянные звёздные скопления найти несложно. Их называют галактическими скоплениями. Речь идёт об образованиях, включающих от нескольких десятков до нескольких тысяч звёзд, большая часть которых видна невооружённым глазом. Звёздные скопления предстают перед наблюдателем как участок неба, густо усеянный звёздами. Как правило, такие области концентрации звёзд хорошо заметны на небе, но бывает, причём довольно редко, что скопление практически неразличимо. Для того чтобы определить, является какой-либо участок неба звёздным скоплением или речь идёт о звёздах, просто близко расположенных друг к другу, следует изучить их движение и определить расстояние до Земли. Звёзды, составляющие скопления, движутся в одном направлении. Кроме того, если звезды, находящиеся не далеко друг от друга, расположены на одинаковом расстоянии от Солнечной системы, они, конечно, связаны между собой силами притяжения и составляют рассеянное скопление.

Классификация звёздных скоплений.

Протяжённость этих звёздных систем варьируется от 6 до 30 световых лет, средняя протяжённость составляет примерно двенадцать световых лет. Внутри звёздных скоплений звёзды сконцентрированы хаотично, бессистемно. Скопление не имеет чётко выраженной формы. При классификации звёздных скоплений следует принимать во внимание угловые измерения, приблизительное общее количество звёзд, степень их концентрации в скоплении и разницу в блеске.

В 1930 году американский астроном Роберт Трамплер предложил классифицировать скопления по следующим параметрам. Все скопления подразделялись на четыре класса по принципу концентрации звёзд и обозначались римскими цифрами от I до IV. Каждый из четырёх классов делится на три подкласса по однородности блеска звёзд. К первому подклассу относятся скопления, в которых звёзды имеют примерно одну степень светимости, к третьему – с существенной разницей в этом плане. Затем американский астроном ввёл ещё три категории классификации звёздных скоплений по числу звёзд, входящих в скопление. К первой категории «p» относятся системы, в которых менее 50 звёзд. Ко второй «m» - скопление, имеющие от 50 до 100 звёзд. К третьей – имеющие более 100 звёзд. Например, в соответствии с этой классификацией, звёздное скопление, обозначенное в каталоге как «I 3p», представляет собой систему, состоящую менее чем из 50 звёзд, густо сконцентрированных в небе и обладающих разной степенью блеска.

Однородность звёзд.

Все звёзды, относящиеся к какому-либо рассеянному звёздному скоплению, имеют характерную черту – однородность. Это значит, что они образовались из одного и того же газового облака и сначала существования имеют одинаковый химический состав. Кроме того, есть предположение, что все они появились в одно время, то есть имеют одинаковый возраст. Существующие между ними различия можно объяснить разным ходом развития, а это определяется массой звезды с момента её образования. Учёным известно, что крупные звёзды имеют меньший срок существования по сравнения с малыми звёздами. Крупные эволюционируют значительно быстрее. В основном рассеянные звёздные скопления представляют собой небесные системы, состоящие из относительно молодых звёзд. Этот вид звёздных скоплений дислоцируется в основном в спиральных ветвях Млечного Пути. Именно эти участки являлись в недавнем прошлом активными зонами звёздообразования. Исключения составляют скопления NGC 2244, NGC 2264 и NGC6530, их возраст равен нескольким десяткам миллионов лет. Это небольшой срок для звёзд.

Возраст и химический состав.

Звёзды рассеянных звёздных скоплений связаны между собой силой притяжения. Но из-за того, что эта связь недостаточно крепкая, рассеянные скопления могут распадаться. Это происходит за длительное время. Процесс расформирования связан с влиянием гравитации одиночных звёзд, расположенных недалеко от скопления.

Старых звёзд в составе рассеянных звёздных скоплений практически нет. Хотя имеются исключения. В первую очередь это относится к крупным скоплениям, в которых связь между звёздами значительно сильнее. Соответственно, и возраст таких систем больше. Среди них можно отметить NGC 6791. В состав этого звёздного скопления входят примерно 10000 звёзд, его возраст составляет около 10 миллиардов лет. Орбиты крупных звёздных скоплений уносят их на длительный период времени далеко от плоскости галактики. Соответственно, у них меньше возможностей встретиться с большими молекулярными облаками, что могло бы повлечь за собой расформирование звёздного скопления.

Звёзды рассеянных звёздных скоплений сходны по химическому составу с Солнцем и другими звёздами галактического диска. Разница в химическом составе зависит от расстояния от центра Галактики. Чем дальше от центра расположено звёздное скопление, тем меньше элементов из группы металлов оно содержит. Химический состав также зависит от возраста звёздного скопления. Это относится и к одиночным звёздам.

ШАРОВЫЕ ЗВЁЗДНЫЕ СКОПЛЕНИЯ.

Шаровые звёздные скопления, насчитывающие сотни тысяч звёзд, имеют очень необычный вид: у них сферическая форма, и звёзды концентрируются в них настолько плотно, что даже с помощью мощнейших телескопов невозможно различить одиночные объекты. Отмечается сильная концентрация звёзд к центру.

Исследования шаровых скоплений имеет важное значение в астрофизике в плане изучения эволюции звёзд, процесса формирования галактик, изучения структуры нашей Галактики и определения возраста Вселенной.

Форма Млечного Пути.

Учёные установили, что шаровые скопления образовались на начальном этапе формирования нашей Галактики – протогалактический газ имел сферическую форму. Во время гравитационного взаимодействия до завершения сжатия, что привело к образованию диска, за его пределами оказались сгустки материи, газа и пыли. Именно из них образовались шаровые звёздные скопления. Причём они сформировались до появления диска и остались там же, где и образовались. Они имеют сферическую структуру, гало, вокруг которого позже расположилась плоскость галактики. Вот почему шаровые скопления дислоцируются симметрично в Млечном Пути.

Изучение проблемы расположения шаровых скоплений, а также проведённые измерения расстояния от них до Солнца, позволили определить их протяжённость нашей Галактики до центра – оно составляет 30000 световых лет.

Шаровые звёздные скопления по времени происхождения очень старые. Их возраст составляет 10-20 миллиардов лет. Они представляют собой важнейший элемент Вселенной, и, несомненно, знания об этих образованиях окажут немалую помощь в объяснении явлений Вселенной. По мнению учёных, возраст этих звёздных скоплений идентичен возрасту нашей Галактики, а так как все галактики сформировались примерно в одно время, значит, можно определить и возраст Вселенной. Для этого к возрасту шаровых звёздных скоплений следует прибавить время от появления Вселенной до начала образования галактик. По сравнению с возрастом шаровых звёздных скоплений это совсем небольшой отрезок времени.

Внутри ядер шаровых скоплений.

Для центральных областей этого вида скоплений характерна высокая степень концентрации звёзд, примерно в тысячи раз больше, чем в ближайших к Солнцу зонах. Только за последнее десятилетие стало возможным рассмотреть ядра шаровых звёздных скоплений, вернее, те небесные объекты, которые находятся в самом центре. Это имеет большое значение в области изучения динамики входящих в ядро звёзд, в плане получения информации о системах небесных тел, связанных силами притяжения, - звёздные скопления относятся именно к этой категории, - а также в плане изучения взаимодействия между звёздами скоплений посредством наблюдений или обработки данных на компьютере.

Из-за высокой степени концентрации звёзд происходят самые настоящие столкновения, формируются новые объекты, например звёзды, имеющие свои особенности. Могут появляться и двойные системы, это случается, когда столкновение двух звёзд не приводит к их разрушению, а происходит взаимозахват из-за гравитации.

Семейства шаровых звёздных скоплений.

Шаровые звёздные скопления нашей Галактики представляют собой неоднородные образования. Различают четыре динамичных семейства по принципу удаления от центра Галактики и по химическому составу. Некоторые шаровые скопления имеют больше химических элементов группы металлов, другие – меньше. Степень наличия металлов зависит от химического состава межзвёздной среды, из которой небесные объекты образовались. Шаровые скопления с меньшим количеством металлов – более старые, они располагаются в гало Галактики. Больший состав металла характерен для более молодых звёзд, они сформировались из среды, уже обогащённой металлами вследствие вспышек сверхновых звёзд, - к этому семейству относятся «дисковые скопления», находящиеся на галактическом диске.

В гало находятся «звёздные скопления внутренней части гало» и «звёздные скопления внешней части гало». Имеются и «звёздные скопления периферической части гало», расстояние от которых до центра Галактики наибольшее.

Влияние окружающей среды.

Звёздные скопления изучаются и подразделяются на семейства не ради классификации как самоцели. Классификация играет большую роль и при исследовании влияния окружающей звёздные скопления среды на его эволюцию. В данном случае речь идёт о нашей Галактике.

Несомненно, на звёздное скопление оказывает огромное влияние гравитационное поле диска Галактики. Шаровые звёздные скопления двигаются вокруг галактического центра по эллиптическим орбитам и периодически пересекают диск Галактики. Это происходит раз примерно в 100 миллионов лет.

Гравитационное поле и приливные выступы, исходящие от галактической плоскости, настолько интенсивно действуют на звёздное скопление, что оно постепенно начинает распадаться. Учёные полагают, что некоторые старые звёзды, в настоящее время дислоцирующиеся в Галактике, некогда входили в состав шаровых звёздных скоплений. Сейчас они уже разрушились. Считается, что за миллиард лет распадаются примерно 5 звёздных скоплений. Это пример влияния галактической окружающей среды на динамичную эволюцию шарового звёздного скопления.

Под действием гравитационного влияния галактического диска на звёздное скопление происходит и изменение протяжённости скопления. Речь идёт о звёздах, расположенных далеко от центра скопления, на них в большей степени воздействует сила притяжения галактического диска, а не самого звёздного скопления. Происходит «испарение» звёзд, размеры скопления уменьшаются.

СВЕРХНОВЫЕ ЗВЁЗДЫ.

Звёзды тоже рождаются, растут и умирают. Их конец может быть медленным и постепенным или резким и катастрофическим. Это характерно для звёзд очень крупных размеров, которые заканчивают существование вспышкой, это сверхновые звёзды.


Открытие сверхновых звёзд.

В течение веков сущность сверхновых звёзд была неизвестна учёным, но наблюдения за ними велись с незапамятных времён. Многие сверхновые звёзды настолько ярки, что их можно рассмотреть невооружённым глазом, причём иногда даже днём. Первые упоминания об этих звёздах появились в античных хрониках в 185 г. н.э. Впоследствии их наблюдали регулярно и скрупулёзно фиксировали все данные. Например, придворные астрономы императоров Древнего Китая зарегистрировали многие из открытых сверхновых звёзд через много лет.

Среди них следует отметить сверхновую звёзду, вспыхнувшую в 1054 г. н.э. в созвездии Тельца. Остаток этой сверхновой звезды носит название «Крабовидная туманность», из-за характерной формы. Систематические наблюдения за сверхновыми звёздами западные астрономы начали вести поздно. Только к концу XVI в. появились упоминания о них в научных документах. Первые наблюдения за сверхновыми звёздами силами европейских астрономов относятся к 1575 г. и 1604 г. В 1885 г. была открыта первая сверхновая звезда в галактике Андромеды. Сделала это баронесса Берта де Подманицкая.

С 20-х годов XX в. благодаря изобретению фотопластин открытия сверхновых следуют одно за другим. В настоящее время их открыто до тысячи. Поиск сверхновых требует большого терпения и постоянного наблюдения за небом. Звезда должна быть не просто очень яркой, её поведение должно быть необычным и непредсказуемым. «Охотников» за сверхновыми не так много, чуть более десяти астрономов могут похвалиться тем, что за свою жизнь открыли более 20 сверхновых. Пальма первенства в такой интересной классификации принадлежит Фреду Цвики – с 1936 г. он идентифицировал 123 звезды.

Что такое сверхновые звёзды?

Сверхновые звёзды – внезапно вспыхивающие звёзды. Эта вспышка – катастрофическое событие, конец эволюции звёзд крупных размеров. Во время вспышек мощность излучения достигает 1051 эрг, что сопоставимо с энергией, испускаемой звездой на протяжении всей своей жизни. Механизмы, вызывающие вспышки у двойных и одиночных звёзд, различны.

В первом случае вспышка происходит при условии, что вторая звезда в двойной системе – белый карлик. Белые карлики – относительно небольшие звёзды, их масса соответствует массе Солнца, в конце «жизненного пути» они имеют размеры планеты. Белый карлик взаимодействует со своей парой в гравитационном плане, он «ворует» вещество из её поверхностных слоёв. «Позаимствованное» вещество разогревается, начинаются ядерные реакции, происходит вспышка.

Во втором случае вспыхивает сама звезда, это происходит, когда в её недрах больше нет условий для термоядерных реакций. На этой стадии преобладает гравитация, и звезда начинает сжиматься быстрыми темпами. Из-за резкого разогревания в результате сжатия в ядре звезды начинают происходить неуправляемые ядерные реакции, энергия высвобождается в виде вспышки, вызывая разрушение звезды.

После вспышки остаётся облако газа, оно распространяется в пространстве. Это «остатки сверхновой» - то, что остаётся от поверхностных слоёв взорвавшейся звезды. Морфология остатков сверхновой различна и зависит от условий, в которых произошла вспышка звезды-«прародительницы», и от её характерных внутренних черт. Распространение облака происходит неодинаково по разным направлениям, что связано с взаимодействием с межзвёздным газом, он может значительно изменить форму облака за тысячи лет.

Характеристика сверхновых.

Сверхновые представляют собой вариацию эруптивных переменных звёзд. Как все переменные, сверхновые звёзды характеризуются кривой блеска и легко узнаваемыми признаками. Прежде всего, для сверхновой характерно быстрое увеличение блеска, оно длится несколько дней, пока не достигнет максимума, - этот период составляет примерно десять дней. Затем блеск начинает уменьшаться – сначала бессистемно, затем последовательно. Изучая кривую блеска, можно проследить динамику вспышки и изучить её эволюцию. Часть кривой блеска от начала подъёма до максимума соответствует вспышке звезды, последующий спуск означает распространение и охлаждение газовой оболочки.

БЕЛЫЕ КАРЛИКИ.

В «звёздном зоопарке» существует великое множество звёзд, разных по размерам, цвету и блеску. Среди них особенно впечатляют «мёртвые» звёзды, их внутренняя структура значительно отличается от структуры обычных звёзд. К категории мёртвых звёзд относятся звёзды крупных размеров, белые карлики, нейтронные звёзды и чёрные дыры. Из-за высокой плотности этих звёзд их относят к категории «кризисных».

Открытие.

Вначале сущность белых карликов представляла собой полную загадку, было известно только то, что они по сравнению с обычными звёздами имеют высокую плотность.

Первым открытым и изучаемым белым карликом был Сириус B, пара Сириуса – очень яркой звезды. Применив третий закон Кеплера, астрономы вычислили массу Сириуса B: 0,75-0,95 солнечной массы. С другой стороны, его блеск был значительно ниже солнечного. Блеск звезды связан с квадратом радиуса. Проанализировав цифры, астрономы пришли к выводу, что размеры Сириуса небольшие. В 1914 году составили звёздный спектр Сириуса B, определили температуру. Зная температуру и блеск, вычислили радиус – 18800 километров.

Первые исследования.

Полученный результат ознаменовал открытие нового класса звёзд. В 1925 году Адамс измерил длину волны некоторых линий излучения в спектре Сириуса B и определил, что она больше, чем предполагалось. Красное смещение вписывается в рамки теории относительности, за несколько лет до происходящих событий открытой Эйнштейном. Применяя теорию относительности, Адамс смог вычислить радиус звезды. После открытия ещё двух похожих на Сириус B звёзд Артур Эддингтон сделал вывод, что во Вселенной таких звёзд много.

Итак, существование карликов было установлено, но их природа по-прежнему оставалась тайной. В частности, учёные никак не могли понять, каким образом масса, похожая на солнечную, может умещаться в таком маленьком по объёму теле. Эддингтон приходит к выводу, что «при такой высокой плотности газ теряет свои свойства. Вероятнее всего, белые карлики состоят из вырожденного газа».

Сущность белых карликов.

В августе 1926 года Энрико Ферми и Поль Дирак разработали теорию, описывающую состояние газа в условиях очень высокой плотности. Используя её, Фаулер в этом же году нашёл объяснение устойчивой структуры белых карликов. По его мнению, из-за большой плотности, газ в недрах белого карлика находится в вырожденном состоянии, причём давление газа практически не зависит от температуры. Устойчивость белого карлика поддерживается тем, что силе тяготения противостоит давление газа в недрах карлика. Изучение белых карликов продолжил индийский физик Чандрасекар.

В одной из своих работ, опубликованной в 1931 году, он делает важное открытие – масса белых карликов не может превышать определённый лимит, это связанно с их химическим составом. Этот лимит составляет 1,4 массы Солнца и носит название «лимит Чандрасекара» в честь учёного.

Почти тонна в см3!

Как и следует из названия, белые карлики являются звёздами малых размеров. Даже если их масса равна массе Солнца, всё равно по размерам они похожи на планету типа Земля. Их радиус равен примерно 6000 км – 1/100 от радиуса Солнца. Учитывая массу белых карликов и их размеры, можно сделать только один

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: