Xreferat.com » Рефераты по металлургии » Контроль качества сгорания топлива в методических нагревательных печах

Контроль качества сгорания топлива в методических нагревательных печах

диффузии.

Зависимость силы электрического тока от градиента концентра­ции и коэффициента диффузии потенциалопределяющих ионов у поверхности плоского электрода и стационарном состоянии (расстояние от поверхности электрода x= 0) выражается уравне­нием :

(8)

где S — активная площадь электрода; D — коэффициент диффузии; dc/dx — градиент концентрации у поверхности электрода.

Количественный анализ полярографическим методом проводят только для веществ, которые восстанавливаются на ртутных электродах или окисляются на платиновых электродах. Поляро­графические измерения производят с применением электрода из любого проводящего материала.

Молекулярный кислород хорошо восстанавливается на ртутном капельном электроде. Однако этот электрод применим только в пределах от —2,5 до +0,2 В и имеет ряд недостатков: токсичность паров, необходимость оборудования специальных лабораторий. В связи с этим в полярографии применяют твердые электроды: платиновые или графитовые, с помощью которых снимают поляро-граммы при анодном окислении веществ от 0 до +1,0 В. Кроме того, твердые электроды имеют следующие преимущества: возможность работы при непрерывном поступлении в поляро­графическую ячейку пробы АГС, в области положительных потенциалов, где применение ртутных капельных электродов ограничено вследствие растворения ртути; применение загущен­ных и твердых электролитов.

Наряду с этим имеются и недостатки: невозможность естественного перемешивания электролита у поверхности электрода; изменение в ряде случаев размера и качественного состояния поверхности электрода в процессе работы.

Отсутствие естественного перемешивания электролита и связанное с этим уменьшение чувствительности устраняют при­нудительным движением электролита вокруг электрода; электрод­ную поверхность обновляют размыканием цепи электролиза, коротким замыканием или другими способами.

В полярографических газоанализаторах на кислород в качестве индикаторных электродов используют электроды из золота и серебра, реже — из платины и палладия. Это объясняется тем, что скорость восстановления кислорода на золотом и серебряном электродах выше, чем на платиновом и палладиевом, а также на золотом электроде быстрее устанавливается поля­ризационное равновесие при восстановлении кислорода. Кроме того, на золотом и серебряном электродах практически не выделяется водород, нарушающий прямую пропорциональность предельного диффузионного тока от концентрации кислорода.

Недостатки платинового и палладиевого электродов — влияние каталитической реакции на электродах между водородом, содержащимся в электролите, и кислородом в пробе АГС на показания прибора и чувствительность процесса электро­восстановления кислорода на электродах к различным загрязне­ниям.

В некоторых случаях используют угольные электроды.

В газоанализаторах с внешним источником питания в качестве материала для анода обычно используют серебро, поскольку оно наименее подвержено коррозии в электролите и растворению в условиях анодной поляризации.

В газоанализаторах с внутренним источником (в гальвани­ческих элементах) в качестве материала для анода применяют цинк, кадмий и свинец, обеспечивающие наибольший отрица­тельный электрический потенциал.

Гальванический метод анализа состава — один из перспектив­ных при разработке портативных аналитических приборов с высокими эксплуатационными характеристиками .

Одним из первых веществ, концентрация которого была опре­делена с помощью газоанализатора, основанного на гальвани­ческом методе, был кислород. Электрохимическая ячейка такого газоанализатора содержит катодный и анодный узлы, а также электролит, например КОН, загущенный крахмалом, В такой электрохимической ячейке с катодом (индикаторным электродом) из позолоченной никелевой проволоки и кадмиевым анодом происходит следующая реакция:

на катоде О2+2Н2О + 4е→ (9)

на аноде 2Cd + →2Cd(OH)2 + 4e.

Значение диффузионного тока в электрохимической ячейке определяется выражением:

(10)

где bтолщина мембраны; П — проницаемость мембраны; —парциаль­ное давление определяемого компонента (кислорода) пробы (АГС).

Таким образом, значение диффузионного тока — функция пар­циального давления определяемого компонента и, следовательно, его концентрации.

Рис. 6. Ячейки с индикаторным электродом:

а – ртутным: 1 — ртутный капельный электрод; 2 — сосуд; 3 — перелив;

б - графито­вым: 1— графитовый индикаторный электрод; 2 — сосуд; 3 — анод;

в — золотым (сере­бряным): 1— контактный термометр; 2 — свинцовый электрод сравнения; 3 — крышка; 4 — нагревательный элемент; 5 — серебряный индикаторный электрод; 6 — корпус; 7 — металлический диск

Ячейка с ртутным индикаторным электродом (рис. 6, а) снаб­жена капиллярным ртутным капельным электродом 1, установлен­ным в сосуде 2, содержащем электролит (раствор соляной кисло­ты), поступающий в сосуд из специальной емкости. Ртуть в капил­лярный электрод поступает из емкости, в которой она хранится. Выдыхаемый воздух подается в ячейку навстречу движущемуся вдоль капельного электрода электролиту, что обеспечивает образо­вание равномерной пленки электролита на поверхности капилляра и установление полного равновесия раствор — газовая смесь, а также систематическое образование капель электролита в ниж­ней части капилляра.

Электролиз осуществляется в каждой капле электролита, сво­бодно висящей на конце капиллярного электрода. В такой ячейке уровень электролита под капилляром поддерживается строго по­стоянным с помощью перелива 3, соединенного с сосудом 2, на дне которого находится постоянный слой ртути, служащий анодом.

Ячейка с графитовым индикаторным электродом (рис. 6, б) со­стоит из графитового индикаторного электрода 1, сосуда 2 и анода 3, покрытого ртутной амальгамой. В качестве электролита исполь­зуют раствор серной кислоты, содержащий в качестве деполяри­заторов анода CdSO4 или ZnSO4, чем достигается постоянство его потенциала. Анализатор, где используется указанная ячейка (ана­лизатор Новака ), предназначен для определения концентра­ции кислорода в технических газах в пределах 0—1 % (об.) с по­стоянной времени 10 с.

Ячейка с золотым (серебряным) индикаторным электродом (рис. 7, в) состоит из корпуса 6, выполненного из органического стекла, крышки из нержавеющей стали 3, на которой закреплен серебряный индикаторный электрод 5, свинцового электрода сравнения 2, нагревательного элемента 4, контактного термо­метра 1. На дне корпуса размещен металлический диск 7, приводимый в движение магнитной муфтой и предназначенный для перемешивания электролита. В качестве электролита исполь­зуют раствор уксусной кислоты, гидроксила натрия и ацетата свинца.

Анализатор Элкофлюкс, в котором используют указанную ячейку, рассчитан на следующие пределы измерения по кислороду 0—0,002; 0—0,01; 0—0,1 % (об.). Постоянная времени прибора при расходе пробы АГС 25 л/ч — 60 с.

Ячейка с золотым индикаторным электродом и золотым анодом (рис. 7, а). На боковой стенке корпуса 1 из органического стекла имеются штуцер ввода пробы АГС 8 и обратный клапан 9, предотвращающий выброс электролита при колебаниях давления газа, электронагреватель 10, контактный термометр 5. В корпусе 1 размещена электрохимическая система, состоящая из рабочего электролита 6, барботажной пластины 11, индикаторного электрода 13, вспомогательного электрода 7, электрода сравнения 4, резервуара для запасного электролита 2, штуцера выхода пробы АГС 3. Рабочий электролит сливают через штуцер 12, резервный электролит — через штуцер 14. Материалом для индикаторного и вспомогательного электродов служит золото. В качестве электрода сравнения используют насыщенный каломельный электрод, в качестве электролита (рабочего и резервного) — раствор гидроксида калия.

Рис 7 Ячейки: а — с золотым индикаторным электродом и золо­тым анодом: 1— корпус; 2 — запасной электролит; 3 — штуцер для выхода АГС; 4 — электрод сравнения; 5 — контактный термометр; 6 — рабо­чий электролит; 7 — вспомогательный электрод; 8 — штуцер для входа АГС; 9 — обратный кла­пан; 10— электронагреватель; 11 — барботажная пластина; 12 — штуцер для слива рабочего электролита; 13 — индикаторный электрод; 14 — штуцер для слива запасного электролита; б—с золотым индикаторным электродом и свинцовым анодом: 1 — электролит; 2 — корпус; 3 — золотой индикаторный электрод; 4— термочувствительный элемент; 5 — свинцовый анод; в — с серебряным индикаторным электродом и свинцовым анодом: / — корпус; 2 — индикаторный электрод; 3 — гидрозатвор; 4 — свинцовый анод; 5—электро­лит; 6—электролизер; 7—увлажнитель АГС


Ячейка с золотым индикаторным электродом и свинцовым анодом изображена на рис. 8, б. В корпусе 2 размещены золотой индикаторный электрод 3, свинцовый анод 5, погруженные в электролит 1, термочувствительный элемент, используемый в схеме термокомпенсации 4. В качестве электролита применяют раствор гидроксида натрия.

Ячейка с серебряным индикаторным электродом и свинцовым анодом изображена на рис. 8 в. В корпусе 1 размещены увлажни­тель газа 7, электролизер 6 с платиновыми электродами, инди­каторный электрод, изготовленный из серебряной сетки 2, свинцо­вого анода и гофрированной ленты 4. На внешней поверхности электрода намотана серебряная проволока, являющаяся токоотводом. Электроды погружены в электролит 5.

Кулонометричесий метод.

Основан на измерении количества электричества, затраченного на электрохимическое превращение.При подаче на электроды кулонометрической ячейки соответ­ствующего потенциала происходит электрохимическое восста­новление или окисление вещества. Для электрохимической реак­ции

Вос→0кс

можно определить массу окисленного вещества Оке, если известно количество электричества, т. е. общее количество электронов, отданных восстановителем Вое, и число электронов п, отданных одной молекулой.

Согласно законам электролиза количество вещества, прореаги­ровавшего на электроде, пропорционально количеству электри­чества, прошедшего через раствор:

m = MIt/nP = MQ/nF, (11)

Где m — масса вещества, прореагировавшего на электроде, г; М — моль вещества; I — сила тока, A; t — время, с; п — число электронов, принимающих участие в электрохимической реакции; F — постоянная Фарадея, равная 96484,56±0,27 Кл-моль-1 и характеризующая количество электричества, необходимое для электрохимического превращения одного моля вещества; Q — количество электричества, израсходованного на реакцию, Кл.

Одним из основных условий осуществления кулонометрии является протекание электрохимического процесса со 100 %-ным выходом по току, что означает равенство фактического коли­чества вещества, вступившего в электрохимическую реакцию, его теоретическому количеству. Для этого нужно знать поляри­зационные кривые для всех веществ, присутствующих в растворе.

Кулонометрический анализ осуществляют либо при заданном токе, либо при заданном потенциале электрода, на котором про­исходит процесс.

Кулонометрия при заданной силе тока основана на измерении количества электричества, прошедшего через раствор при электро­химической реакции. Зная число электронов, требующееся для электрохимического окисления или восстановления вещества, и количество электричества, прошедшего через раствор (оно равно произведению силы тока на продолжительность его протекания), рассчитывают концентрацию определяемого компонента. При кулонометрии при заданной силе тока можно использовать как восстановительный процесс, протекающий на катоде, так и окислительный — на аноде.

В кулонометрии при постоянном потенциале измерение проводят при постоянном потенциале рабочего электрода, что максимально приближает выход реакции по току к 100 % и полностью избавляет от побочных реакций. Для поддержания постоянного потенциала рабочего электрода используют спе­циальное устройство — потенциостат и трехэлектродную схему. Третьим электродом является стандартный электрод сравнения — каломельный или хлорсеребряный, относительно которого изме­ряют и поддерживают потенциал рабочего электрода — катода или анода.

Уравнение электролиза в перемешиваемом растворе при постоянном потенциале выражается соотношением:

(12)

где Vобъем раствора, подвергаемого электролизу; Со — концентрация веще­ства в растворе; — толщина диффузионного слоя.

Преимущества кулонометрических газоанализаторов сле­дующие: высокая чувствительность, широкий динамический диа­пазон, независимость выходного сигнала от температуры и со­стояния поверхности электродов, простая"конструкция, небольшие размеры и масса, возможность их абсолютной градуировки, легкость автоматизации. К недостаткам кулонометрических газо­анализаторов относятся: малая избирательность, необходимость периодической смены электролита.

Наиболее эффективное средство повышения избиратель­ности — использование проницаемых мембран. Для индикаторных электродов наиболее часто применяют серебро, золото, платину.

Кулонометрический метод позволяет определить концетрацию молекулярного кислорода в газовых смесях до 10-3 % (об.). В настоящее время для определения меньших концентраций широко используют кулонометрические газоанализаторы с твер­дыми, загущенными и жидкими электролитами .

Потенциометрический метод.

Сущность метода заключается в измерении электродвижущих сил обратимых электрохимических цепей, когда рабочий электрод имеет потенциал, близкий к равно­весному значению.

При соприкосновении двух металлов, металла с раствором, двух растворов и т. п. между ними образуется разность потенциа­лов, которая известна как потенциал границы раздела фаз. Для потенциометрии наиболее важным является потенциал, возникающий между металлом и раствором. При погружении металлического электрода в раствор, содержащий ионы этого же металла, между твердой и жидкой фазами устанавливается равновесие

Me0↔Mez+ +ne(13)

где Mez+ — элемент с соответствующей валентностью Z.

Электродный потенциал, возникший при границе металл — раствор, называют равновесным потенциалом.

Электрод, погруженный в раствор, представляет собой так называемый полуэлемент. Непосредственно измерить потенциал отдельного электрода невозможно, для его определения исполь­зуют косвенный метод, основанный на сравнении значения потен­циала одного электрода со значением потенциала другого электрода.

Два электрода, погруженные в соответствующие растворы, имеют свои собственные, характерные для данных условий потен­циалы и образуют гальванический элемент," напряжение которого равно алгебраической разности этих потенциалов.

Напряжение гальванического элемента называется электро­движущей силой (э. д. с.) элемента, ее вычисляют по формуле:

э. д. с. = E a-Ek

где Ea — потенциал анода, Ek — потенциал катода.

При измерении э. д. с. гальванического элемента абсолютные значения потенциалов обоих электродов остаются неизвестными. Поэтому в качестве сравнительного выбирают электрод, с потен­циалом которого можно сравнивать потенциалы других элек­тродов.

Стандартные электроды должны удовлетворять следующим требованиям :

потенциалопределяющая электродная реакция должна быть термодинамически обратимой;

электроды должны быть слабо поляризуемыми, т. е. незначи­тельно изменять свой потенциал при прохождении тока; обладать высокой воспроизводимостью и сохранять постоянство потенциала при длительном хранении и при работе в различных условиях.

Перечисленным требованиям соответствуют электроды, наибо­лее широко используемые в электрохимических методах анализа: водородный, каломельный, хлорсеребряный электроды и др.

Зависимость равновесного потенциала электрода от концен­трации определяемого компонента при температуре 25 °С выра­жается видоизмененным уравнением Нернста:

,(14)

где E0 — нормальный электродный потенциал; С — концентрация определяемого компонента (ионов), зависящая от числа моль-ионов в 1 л.

Для реакции

О2 + 4Н+ + 4е = 2Н20,(15)

при температуре 25 °С нормальный потенциал равен +1,23 В.

Для определения концентрации молекулярного кислорода в газовых смесях с помощью приборов, принцип действия которых основан на потенциометрическом методе, в основном используют твердые электролиты.

Использование твердых электролитов.

Твердые электролиты — твердые тела, электропроводность которых обусловлена переносом ионов. Использование их в электрохимических анализаторах обеспечивает избирательность анализа, что позволяет создать образцовые аналитические приборы соответствующих разрядов .

Электрохимические ячейки с твердыми электролитами исполь­зуют в двух режимах: потенциометрическом и кулонометрическом.

В потенциометрическом режиме э. д. с. возникает непосред­ственно в области границ трех фаз электрод — твердый электро­лит — газовая фаза. Причем э. д. с. не зависит от того, какой электропроводящий материал (плотный или порошкообразный) применяют в качестве электрода, так как для образования потен­циала растворение компонентов газа в электродном слое не является необходимым. Такому механизму образования э. д. с. соответствует следующая запись электрохимической ячейки


Электронный проводник газовая фаза катода A ()

Твердый электролит

Электронный проводник газовая фаза B ()

Где парциальное давление кислорода;

Если в качестве электронного проводника использовать пла- ' тину, а в качестве ТЭ — диоксид циркония, стабилизированный ; монооксидом кальция (ZrOaCaO), который образует электролит с кислородоионной проводимостью, то в сокращенном виде формула такой электрохимической ячейки может быть записана в виде :

A(),Pt║ZrO2CaO║Pt, B()

Э. д. с. такой электрохимической ячейки выражается видоизме­ненным уравнением Нернста:

E=(RT/4F)ln

Электродвижущую силу твердоэлектролитной ячейки в по­тенциометрическом режиме определяют как. разность двух электродных потенциалов: потенциала рабочего электрода (элек­трода, реагирующего на определяемый компонент пробы АГС) и электрода сравнения.

Если электрод сравнения омывается чистым кислородом с давлением 0,9807-105 Па, а рабочий электрод — пробой АГС с парциальным давлением кислорода р02, то разность потенциалов между электродами (в мВ) выразится уравнением:

E = 0,4959T(4,9915-lg).(16)

В твердоэлектролитной ячейке камера 1 разделена на две части мембраной 2 из ТЭ (рис. 11, а). На поверхность мембраны нанесены газопроницаемые электроды 3, выполненные из металла, не вступающего в химическое взаимодействие с пробой АГС. С одной стороны мембрана омывается сравнительным газом с известной концентрацией кислорода, а с другой — пробой АГС. Разность потенциалов между электродами является функ­цией концентрации кислорода в пробе АГС.

На потенциометрическом методе основан принцип действия газоанализаторов для определения кислорода „Циркон" и "Флю­орит" .

Рис. 8. Твердоэлектролитная ячейка:а — в потенциометрическом режиме: 1 — камера; 2 — мембрана; 3 — электроды; б — в ку-лонометрическом режиме: 1,3 — электроды; 2 — Твердоэлектролитная ячейка; 4 — источ­ник постоянного тока; 5 — прибор для измерения силы тока

Недостатки потенциометрических твердоэлектролитных газо­анализаторов — необходимость иметь сравнительную газовую смесь и с высокой точностью поддерживать заданную температуру в рабочей зоне.

В твердоэлектролитных .ячейках, работающих в кулонометри-ческом режиме, эти недостатки отсутствуют.

В кулонометрическом режиме проба АГС поступает в ячейку 2 (рис. 8,б), выполненную из ТЭ в виде трубки, на внешнюю и внутреннюю поверхность которой нанесены электроды 1 и 3. К электродам приложено напряжение от источника постоянного тока 4 и последовательно с ними подключен прибор для измере­ния электрического тока 5.

Молекулы кислорода из пробы АГС диффундируют к поверх­ности внутреннего электрода и, сорбируясь на нем, диссоциируют на атомы

О2↔О+О,

которые в свою очередь ионизируются за счет электронов элек­трода

О + 2е↔О2-,

проникая к границе раздела газ — электрод — электролит.

Под напряжением ионы кислорода переносятся через электро­лит к внешнему электроду, на котором ионы, отдавая электроны во внешнюю цепь, рекомбинируют до молекулярного кислорода, отходящего в окружающую атмосферу. Таким образом, во внеш­ней цепи электрохимической ячейки возникает электрический ток. В установившемся режиме, когда осуществляется практически полный перенос кислорода из пробы АГС, расход газа через твердоэлектролитную ячейку постоянный. Зависимость между током переноса и концентрацией кислорода пробы АГС выража­ется соотношением, выведенным на основе закона Фарадея:

I = QCnF/M,(17)

где Q — расход пробы АГС; С — концентрация кислорода в пробе АГС; М — молекулярная масса кислорода.

Кроме процессов окисления и восстановления кислорода на электродах никаких реакций, связанных с образованием новых еществ в твердоэлектролитных ячейках, не происходит, т. е. ячейка является обратимой. В этом заключается принципиальное отличие и одно из существенных преимуществ данных ячеек по сравнению с жидкостными электрохимическими ячейками. Преимуществами этих ячеек являются также широкий диапазон измерений, малая инерционность, возможность расчета градуи-ровочной характеристики, простота аппаратурного оформления. Твердые электролиты обладают высокой устойчивостью к механи­ческим воздействиям, работоспособностью в широком интервале температур, имеют большой срок службы, легко поддаются миниа­тюризации.

Недостатки ячеек: трудность обеспечения хорошей адгезии электродов к твердому электролиту в течение длительного вре­мени работы при высоких температурах и необходимость создания высокой рабочей температуры твердого электролита (от 500 до 1200 °С).

Автоматический анализатор кислорода 151ЭХО2

 Предназначен для использования на тепловых электростанциях, в паровых и водогрейных котлах с целью контроля и регулирования режимов работы энергетических установок и котлов различного типа, а также для технологических печей.

Рекомендуется для контроля содержания кислорода в дымовых газах, газоходов котлов во всех отраслях промышленности сельского и коммунального хозяйства.

Анализатор имеет твердоэлектролитный датчик погружного типа, конструкция которого позволяет устанавливать его непосредственно в дымовом потоке. Конструктивное решение прибора исключает сложные устройства пробоотбора и пробоподготовки и, кроме того, делает возможным определение реального содержания кислорода (с учетом влияния паров воды, содержащихся в продуктах сгорания топлива).

В приборе предусмотрена схема защита измерительной ячейки от перегрева. С помощью аналогового выходного сигнала анализатор может подключаться к вычислительному комплексу для работы в составе автоматизированной системы.

Прибор имеет два уровня сигнализации, регулируемые в пределах диазонов измерения, и состоит из трех унифицированных блоков (промежуточного преобразователя - ПП, блока питания -БП; первичного измерительного преобразователя - ПИП).

Анализатор обеспечивает непрерывное поддержание оптимального процесса горения, снижает стоимость комплексных эколого-технологических ремонтно-наладочных испытаний, гарантирует максимальное энерго- и ресурсосбережение.

Применение анализатора 151ЭХО2 на котле ДКВР-10/13 позволило получить годовой экономический эффект 12000 у.е. На котле в "Винницаэнерго", сжигающем 86000 м/куб. газа в сутки, применение анализатора 151ЭХ02 позволило повысить к.п.д. на 5 % и сэкономить за год 130000 у.е.

Комитетом Украины по стандартизации, метрологии и сертификации был выдан сертификат соответствия А-М1/2-266-98. Прибор внесен в Государственный реестр средств измерительной техники, допущенных к применению в Украине за № УД45-98.

Диапазон измерений, объемная доля кислорода, % 0,25-10
Предел допускаемой основной приведенной погрешности, % 2,5
Время установления показаний, с 15
Максимальная температура в месте установки зонда, °С 600
Питание от сети переменного тока, В/Гц 220/50
Потребляемая мощность, ВА, не более 250
Масса комплекта (ПИП. БП, ПП и монтажные части), кг, не более 30

Выходной сигнал с цифровой индикацией, мА

В

0-5;4-20;

0-10

Длина погружаемой части ПИП, м 0,5; 1: 1,5
 

Технические характеристики


О2-АДГ-1 - Анализатор кислорода в дымовых газах

НАЗНАЧЕНИЕ

О2-АДГ-1 современный автоматический газоанализатор, предназначенный для непрерывного измерения концентрации свободного кислорода в газовой среде с целью технологического и экологического контроля. Наиболее целесообразно его использование в системах автоматического контроля и регулирования процессов сжигания топлива.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Теплоэнергетика, металлургия, нефтехимия, производство строительных материалов, коммунально-бытовой сектор и другие отрасли, где используются топливосжигающие агрегаты, работающие на различных видах топлива.

ПРИНЦИП ДЕЙСТВИЯ

Метод ЭДС с использованием ионопроводящих твердых электролитов, селективных по кислороду.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Пределы измерения концентрации кислорода,% об.............0,1-10(0,1-21)

Погрешность измерения,%......................................................+/- 2,0

Время реагирования,с..............................................................20

Выходной сигнал на вторичный прибор

- постоянного тока, мА ............................................................ 0-5

- постоянного напряжения,В................................................... 0-10

Напряжение питания (переменный ток)................................ 220

Потребляемая мощность, Вт................................................. 60

Режим работы .........................................................................непрерывный

Температура окружающей среды,°С:

-у блока первичного преобразователя ............................... -30...+70

-у измерительного блока ..................................................... 0...+50

Расход анализируемого газа, л/час. ......................................15

Характеристика анализируемого газа:

- температура,°С................................................................... до +600

- пылесодержание, мг/м3 ........................................................ до 10,0

Исполнение ...........................................................................погружной зонд с датчиком

Длина погружной части, м ....................................................... до 1,5

Габариты прибора, мм.........................................................120х120х350; 200х250х180

Масса блоков, кг................................................................. не более 1,5;1,6

Срок службы, лет ................................................. 8

КОМПЛЕКТНОСТЬ

Конструктивно газоанализатор состоит из двух блоков:

  • первичного преобразователя (с зондом)

  • измерительного блока с цифровой индикацией.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Анализатор прост и надежен в эксплуатации и ремонте, не требует специальнойподготовки персонала, не нуждается в пробоотборе и пробоподготовке. Его датчик может быть установлен как на газоходе, так и на шунтовой трубе. В приборе предусмотрены полуавтоматическая проверка работы всех измерительных каналов и калибровка.

ЭФФЕКТИВНОСТЬ

Экономический эффект применения анализатора дымовых газов О2-АДГ-1 обусловлен экономией не менее 3-5% топлива за счет эффективного контроля присосов по газовому тракту котла.Срок окупаемости прибора по этому показателю 6-12 месяцев.

Научно-производственная фирма "У Р А Н" гарантирует Вашему предприятию быструю поставку анализатора О2-АДГ-1, внедрение и сервисное обслуживание на высоком уровне и самых выгодных условиях.

Использование топливных элементов.

В основе действия топливного элемента лежит реакция окисления водорода кислородом с выделением тепла:

2H2+O2→2H2O + Q.(18)

Эту реакцию можно проводить таким образом, чтобы в реак­ционной системе возникал электрический ток, т. е. осуществля­лось направленное движение заряженных частиц (электронов). Для этого необходимо создать замкнутую электрическую цепь, состоящую из электролита (источника ионов) и двух электродов, к одному из которых подводится водород, а к другому — кисло­род. В такой электрохимической ячейке происходят следующие процессы:

2H2 + 4OH- →4Н2О + 4е-

4е-+О2+2Н2О→4ОН-(19)

В сумме эти две реакции дают реакцию (18).

Основными элементами топливного элемента являются: анод, катод и электролит, т. е. те же элементы, что и в любом электро­химическом анализаторе.

При определении концентрации газов и паров с помощью топливных элементов электролитом могут служить как жидкие электролиты, так и твердые . При использовании твердого носителя ионов, например синтетической полимерной ионообмен­ной мембраны, устраняются недостатки, присущие ячейкам с жидким электролитом. Наличие в полимерной структуре мембраны неподвижных ионных групп и одновременно находящихся в равновесии с ними и способных к обмену подвижных ионов, используемых для переноса тока, способствуют тому, что концен­трация ионов в отмытой мембране и ее проводимость не изме­няются в процессе работы ячейки длительное воемя. Упрощаетсятакже изготовление электродов, так как роль последних могут выполнять металлические сетчатые электроды, прижатые к боко­вым поверхностям мембраны с обеих ее сторон.

Рис. 9. Схема топливного элемента, используемого в качестве газоанализатора;

/—ионообменная мембрана; 2, 4—рабочая и сравнительная камеры; 3—электроды


Схема топливного элемента, используемого для определения концентрации газообразных веществ, показана на рис. 9. Ионо­обменную мембрану 1 вместе с плотно прижатыми к ней с обеих сторон металлическими активными сетчатыми электродами 3 по­мещают в камеру и таким образом разделяют ее на две части: рабочую 2 и сравнительную 4. В рабочую камеру 2 поступает проба АГС, содержащая определяемый компонент, а в сравни­тельную подается чистый газ, являющийся восстановителем или окислителем.

При определении концентрации молекулярного кислорода в сравнительную камеру можно подавать, например водород.

При одновременной подаче с постоянными скоростями пробы АГС с одной стороны и чистого газа (окислителя или восстанови­теля) с другой — на границе раздела мембрана — активирован­ные электроды возникает электрохимическая реакция «холодного горения» (реакция происходит при комнатной температуре) определяемого компонента, сопровождаемая появлением разности потенциалов между электродами. Эта разность потенциалов, или электрического тока, является функцией концентрации определяе­мого компонента пробы АГС.

Оптические методы.

Молекулярный кислород в ближней ИК-области спектра (от 0,75 до 15 мкм) не поглощает излучение, в видимой области спектра молекулярный кислород слабо поглощает; в УФ-области спектра молекулярный кислород имеет полосы поглощения от 195 до 130 нм.

В области от 130 до ПО нм молекулярный кислород прозра­чен, а от 110 до 30 нм лежит область сплошного поглощения молекулярного кислорода. Максимум поглощения излучения молекулярного кислорода расположен на длине волны около 145 нм .

Оптико-акустические газоанализаторы

Оптико-акустические газоанализаторы по принятой классифи­кации следует отнести к оптическим. Они основаны на измерении степени поглощения газом прерывистого потока инфракрасной рдиации. Излучения инфракрасной области спектра поглощаются газами, молекулы которых состоят из двух или большего числа различных атомов и ионов. В теплоэнергетике их применяют для измерений СО2; СО; СН4.

Оптико-акустический эффект состоит в следующем: при воздей­ствии на газ (находящийся в замкнутом объеме) прерывистым потоком инфракрасной радиации происходит пульсация температуры, а следовательно, и давления этого газа. Эта пульсация, воздейст­вуя на микрофон, вызывает «звучание» газа.

На рис. 10 приведена принципиальная схема газоанализатора. Инфракрасное излучение от двух источников 1 направляется по двум каналам (рабочему и сравнительному),
проходя при этом через обтюратор 2,который шесть раз в секунду прерывает оба потока одно­временно. Прерывистые потоки излучения проходят через фильтровые камеры 3 заполненные
обычно данной смесью газа, из которой исключен анализируемый компонент. Наличие фильт­ровых камер обеспечивает уменьшение погрешности за счет возможного частичного наложения
спектров поглощения анализируемой и не анализируемой составляющей газовой смеси. Далее поток радиации, направленный по рабочему каналу, проходит ра­бочую камеру 4, через которую непрерывно пропускается анали­зируемая газовая смесь. Анализируемая составляющая газа по­глощает часть энергии, определяемой поглощающей способностью этого газа. Остаток лучистой энергии после отражения от пла­стины 5 поступает в правую область луче приемника 6. Лучистый поток, проходящий по сравнительному каналу, после фильтровой камеры 3 попадает в компенсационную камеру 8. Компенсацион­ная камера заполнена анализируемой составляющей смеси. На по­верхности этой камеры имеются окна из специального стекла (Li+F) 7 свободно пропускающего инфракрасные лучи. Внутри компенсационной камеры имеется отражательное зеркало, которое направляет лучистый поток в левую область луче приемника 6. Если в правую и левую области луче приемника поступают различные по величине прерывистые потоки излучения, то конденсаторный микрофон 15, помещенный в луче приемнике, создает звуковой сигнал, который после усиления усилителем 14 воздействует на реверсив­ный двигатель 12. Реверсивный двигатель с помощью редуктора 11 перемещает отражательное зеркало 13 до тех пор, пока поток сравнительного канала не уравняется с потоком, поступающим в луче приемник по рабочему каналу. При равенстве этих потоков звучание микрофона прекращается. Перемещение отражательного зеркала внутри уравнительной камеры вызывает изменение ее объема, т. е. изменение пути движения газа, что приводит к измене­нию поглощения лучистой энергии. Одновременно с редуктором перемещается движок реохорда 9 вторичного прибора 10.

Подобные газоанализаторы выпускают для диапазонов от 0ч1% до 0ч100% по объему анализируемого компонента с основ­ной погрешностью от ±2,5 до

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: