Xreferat.com » Рефераты по металлургии » Исследование применения сплавов системы Al-Mg-Si для производства поршней гоночных автомобилей

Исследование применения сплавов системы Al-Mg-Si для производства поршней гоночных автомобилей

рубежом для модифицирова­ния заэвтектических силуминов применяют сложные препараты, содержащие фтортитанат и фторцирконат калия и другие вещества.

Однако имеющиеся в настоящее время модификаторы не позво­ляют получить нужные структуру и механические свойства заэвтек­тических силуминов. Общий недостаток всех известных модифика­торов — это то, что при измельчении кристаллов первичного крем­ния огрубляется структура эвтектики a – Al3Si, вследствие чего относительное удлинение даже хорошо модифицированных сплавов, содержащих более 22% кремния, очень низкое (не превышает 0,5%). С целью устранения этого недостатка И. Ф. Колобневым и В. А. Ро-тенбергом для заэвтектических силуминов предложены комбиниро­ванные модификаторы, содержащие фосфор и углерод (в виде фосфорорганнческих соединений).

Эксперименты по модифицированию заэвтектических силуминов трифениловым эфиром ортофосфорной кислоты (трифенилфосфатом) (С10Н3О3) РО, хлорофосом С4Н8О4РС19 и другими фосфорорганическими соединениями показали, что введение фосфора и углерода (в виде фосфорорганического соединения) в расплав позволяет резко измельчить кристаллы первичного кремния и одновременно модифи­цировать эвтектику, тогда как существующие в настоящее время модификаторы измельчают первичный кремний, но при этом способствуют огрублению эвтектики.

Исследованный сплав имел следующий химический состав: 21,75% Si; 2,93% Си; 2,04% Ni; 0,52% Мп; 0,38% Сг; 0,24% Ti; 0,68% Mg-0,1% Zr; 0,56% Fe.

Предел прочности при растяжении и относительное удлинение заэвтектических силуминов, модифицированных фосфорорганическими соединениями (в частности, хлорофосом и трифинилфосфатом), выше этих же характеристик сплавов, модифицированных другими способами, в среднем соответственно на 10—15% и на 40—50%. Интересно отметить, что относительное удлинение модифицирован­ных фосфорорганическими соединениями сплавов достигало на целом ряде образцов 2,0—2,5%.

Механизм модифицирования заэвтектических силуминов фосфор-органическими соединениями можно представить следующим обра­зом. Как было показано прямыми экспериментами по фильтрации расплавов, при введении в заэвтектические силумины фосфора обра­зуется фосфид алюминия, параметры кристаллической решетки которого (структурный тип сфалерита ZnS) очень близки к параметрам кристаллической решетки кремния (тот же структурный тип). Вследствие этого, согласно принципу структурного и размерного соответствия, мельчайшие частицы фосфида алюминия служат за­родышами для кристаллов кремния. Вместе с тем при введении угле­рода в расплаве, по-видимому, образуются частицы карбида кремния и карбидов других металлов (TiC, ZrC и др.), которые являются готовой кристаллической подкладкой для кристаллизующегося из расплава первичного кремния. Таким образом, измельчение кристал­лов первичного кремния связано с увеличением числа центров кри­сталлизации.

Проведенные эксперименты показали более высокую эффектив­ность комбинированных фосфорорганических модификаторов по сравнению с другими известными в настоящее время модификато­рами, в том числе зарубежными препаратами «Alphosit», «Phoral» и др. Помимо наиболее важного достоинства фосфорорганических модификаторов — одновременное измельчение и кристаллов пер­вичного кремния и эвтектики, эти модификаторы имеют еще следу­ющие достоинства. Операция модифицирования не связана с изменением состава сплава и не требует высокого перегрева расплава.

Введение в расплав правильно подобранных фосфорорганических соединений не сопровождается пироэффектами и выбросами металла, часто происходит при модифицировании заэвтектических силуминов термитными смесями.


2.4. Кратковременные испытания литейных

алюминиевых сплавов при

повышенных температурах


Литые детали из алюминиевых сплавов широко применяются в конструкциях разового назначения, претерпевающих воздействие высоких температур и напряжений. Для таких условий работы требуются не столько жаропрочные сплавы, сколько сплавы с высо­кой исходной прочностью, так как литые детали можно кратковре­менно нагревать до высоких температур без существенных измене­ний их свойств.

В литературе имеется много данных, характеризующих жаро­прочность литейных алюминиевых сплавов, однако о сплавах, пред­назначенных для деталей разовых назначений, сведений не имеется. Поэтому в этой главе приводятся результаты кратковре­менных испытаний на разрыв (от 10 сек до 60 мин) при температурах 100, 200, 300, 400о С. Эти данные имеют исключительно важное значение для конструкторов и технологов, создающих изделия разового назначения.


2.4.1. Кратковременные испытания сплавов на

растяжение по обычной методике


Данные исследования механических свойств сплавов АЛ4, АЛ5, АЛ7, АЛ9, АЛ20 и АЛ24 в зависимости от условий испытания заим­ствованы из работы О. Б. Лотаревой и Л. И. Локтионовой. Испыта­ния при повышенных температурах разделялись на кратковременные и длительные и проводились на образцах диам. 10 мм с литейной коркой. Перед испытанием сплавы подвергали термической обра­ботке по обычно применяемым в промышленности режимам. Сплав АЛ24 испытывали в литом состоянии. Кратковременные испытания проводили при температурах 100, 150, 175, 200 и 250' С по обще­принятой методике, заключающейся в прогреве образца без нагрузки в течение 30 мин и в постепенном его нагружении до разрушения.

Полученные результаты показали, что при тем­пературе 100° С предел прочности сплавов АЛ5 и АЛ7 (Т5) практи­чески не изменился, а у сплава АЛ7 (Т4) прочность снизилась. Некоторое повышение предела прочности при этой температуре можно отметить у сплава АЛ24, очевидно, за счет склонности этого сплава к старению. Снижение предела прочности остальных сплавов началось с температуры 100: С. Относительное удлинение всех сплавов до 200е С повышается незначительно, но при более высоких температурах оно резко увеличивается. Результаты испытания сплава АЛ7 (Т5) показывают, что предел прочности можно повысить за счет старения.

Ряд деталей, изготовляемых литьем под давлением, из сплавов АЛ22, АЛ20 и АЛ5 работает при повышенных температурах. На квазибинарном разрезе Al—Mg3Sb2 имеется эвтектика, содержащая примерно 0,5% Mg3Sb2 (0,38% Sb и 0,12% Mg), с температурой плавления 658°С [3]. Максимальная растворимость в твердом состоянии составляет порядка 14% Mg, растворимость сурьмы в алюминии пренебрежимо мала (менее 0,0 *%Sb). Высокотемпературная форма, по-видимому, кубическая.

Параметр решетки твердого раствора сплавов, богатых алюминием, зависит главным образом от содержания магния. Добавка сурьмы уменьшает поверхностное натяжение на границе раздела жидкость — газ сплавов системы Al—Mg; сурьма способствует улучшению коррозион­ной стойкости в морской воде. Подробности приведены в ч. II.


2.5. Диаграмма AlMgSi


Эта простая по строению диаграмма состояния тщательно изучена. Хо­роший обзор по системе А1—Mg—Si выполнен авторами работ. В рав­новесии с алюминиевым твердым раствором находится соединение Mg2Si. Оно лежит на квазибинарном разрезе Аl—Mg2Si, отвечающем отношению концентраций Mg: Si=l,73. В табл. 10 приведены двойные и тройные нонвариантные реакции в области, богатой алюминием.

Таблица 2.10

НОНВАРИАНТНЫЕ РЕАКЦИИ В АЛЮМИНИЕВОМ УГЛУ ДИАГРАММЫ Al-Mg-Si

Точки реакций на диаграмме


Реакция


Содержание элементов, %

t, оC



жидкость

А1




Мg

Si

Мg

Si


A

Ж а AI+Si

12,5

1,65

577

B

Ж а А1 + Мg5Аl8

34,0

17,4

450

C

Ж а AI +Mg2Si

8,15

7,75

1,17

0,68

595

D

Ж а Al + Mg2Si + Si

4,96

12,95

0,85

1,10

555

Е

Ж а А1 + Мg2Si+ Мg5Аl8

32,2

0,37

15,3

0,05

449


Химический состав фаз Si, Мg5Аl8 и Mg2Si, участвующих в реакциях по-видимому, незначительно отличается от стехиометрического. Атомы магния и кремния в алюминиевом твер­дом растворе стремятся к образованию «молекул» Mg2Si. Раствори­мость Mg2Si в твердом алюминии в твердом состоянии несколько уменьшается, если содержание кремния превышает отношение концентраций Mg : Si=l,73




Алюминиевый угол диаграммы Аl—Mg—Si:

а — проекция поверхности ликвидус; б — распределение фазовых областей в твердом состоянии. Концентрации, отвечающие точкам А, В, С, D и Е, приведены в табл. 11 — линия квази-бинарного разреза


Соединение Mg2Si (63,2% Mg и 36,8% Si) обладает кубической решет­кой (12 атомов в элементарной ячейке) с параметром а = 6,35н-6,40 А. Оно изоморфно фазам MgsGe, Mg2Pb, MgsSri, но имеет очень узкую область существования. Его температура плавления составляет 1087°С, плотность - 1,88 г/см3.


Таблица 2.11

ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ АЛЮМИНИЕВОГО ТВЕРДОГО РАСТВОРА, В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ


t. °c A, Mg B C D E, Si


Mg Si Mg Si Mg Si
595 -----

-----


-----


1,17 0,68

----



577
-----
1,10 0,63 ----- 1,65
552
-----
1,00 0,57 0",83 1,06 1,30
527


0,83 0,47 0,6 0,8
502


0,70 0,40 0,5 0,65 0,80
452 17,4 15,3 0,1 0,48 0,27 0,3 0,45 0,48
402 13,5 11 0,0x 0,33 0,19 0 22 0,3 0,29
302 6,7 5 0,0x 0,19 0,11 0,1 0,15 0,06

В неравновесных условиях (после кристаллизации с большой скоростью охлаждения) появляется тенденция к локальной ликвации. При этом кри­сталлы кремния могут появляться в сплавах, где кремний должен входить в соединение Mg2Si. Благода­ря ликвации соединение Mg2Si или Mg5Al8 может присутствовать в спла­вах, которые в равновесном состоя­нии являются однофазными. Однако при получении материалов в пол­ностью неравновесных условиях зна­чительное различие в структуре от­сутствует.

Поверхностное натяжение трой­ных сплавов уменьшается при введе­нии магния и кремния. Магний увеличивает, а кремний уменьшает па­раметр решетки алюминия. Значение параметра решетки твердого раствора магния и кремния в алюминии меньше расчетного значения, полученного сум­мированием эффектов от раздельного введения магния и кремния. По данным работы, параметр решетки уменьшается в процессе старения. Однако это противоречит общепризнанным сведениям. Изучено изменение параметра решетки при деформации. Термический коэффициент линейного расширения сплавов, близких по составу к разрезу Al—Mg2Si, практически не отличается от алюминия. При большем содержании магния коэффициент несколько возрастает, при увеличении концентрации кремния снижается, но эти колебания незначительны. При отношении концентраций Mg: Si = 1,73 обнаруживается аномалия электросопротивления. Электросопротивление сплавов, содержащих l%Mg+Si, при 447°С составляет порядка 8,6—8,8 x 10-8 Ом-м, а в сплавах с отношением Mg:Si=l,73 оно падает ниже 8,5 x 10-10Ом-м. При комнатной температуре электросопротивление сравнительно невелико: 3—3,2-10-8 Ом-м у сплавов с 1—1,5% Mg2Si в полностью состаренном состоянии и 2,8—2,9x10-8 Ом-м — после отжига. Избыток кремния увели­чивает, а избыток магния уменьшает электросопротивление;


Температурный коэффициент электросопротивления составляет 3,6—3,8- 10-12 Ом-м/°С . Сплавы переходят в сверхпроводящее состояние при

-271,9°С (1,3 К), но после старения до максималь­ной прочности температура перехода снижается до -272,5°С (0,7 К) .

Увеличение количества фазы Mg2Si незначительно влияет на модуль упругости алюминия; при избытке кремния он повышается, а при избытке магния— несколько снижается. Скорость распространения ультразвука в алюминии слегка возрастает при увеличении концентраций силицида магния ; этот эффект более ощутим в присутствии избытка кремния. Электродный потенциал (относительно каломельного электрода) фазы Mg2Si меняется в зависимости от поляризации в интервале 0,7—1,5 В, а потенциал алюминиевого твердого раствора мало меняется при растворе­нии или выделении фазы Mg2Si. Поэтому при правильном соотношении концентраций магния и кремния сплавы системы Al—Mg—Si обладают очень хорошей коррозионной стойкостью: в термически обрабо­танном состоянии сплавы не чувствительны к межкристаллитной коррозии; к коррозии под напряжением. Межкристаллитная коррозия может воз­никнуть, если на границах зерен образуется сплошная прослойка выделений Mg2Si . Избыток магния мало влияет на коррозионную стойкость. При избытке кремния формируется обедненная приграничная зона с электроот­рицательным потенциалом по отношению к остальному материалу. Это может вызвать определенную склонность к межкристаллитной коррозии. Сплавы с большим избытком магния имеют несколько более низкую коррозионную стойкость, чем соответствующие композиции системы Al—Mg . Основным фактором, определяющим коррозионное поведение сплавов, богатых кремнием, является пара : алюминиевый твердый раствор — кремний, а малые добавки Mg2Si обычно оказывают очень слабое влияние.

Скорость диффузии магния и кремния из сплавов, содержащих Mg2Si (с избытком или без избытка кремния), в алюминий уменьшается при сов­местном присутствии этих двух элементов, оставаясь пропорцио­нальной градиенту концентрации. В случае направленной кристаллизации квазибинарной эвтектики фаза Mg2Si имеет такие же ориентационные соотношения с матрицей , как и при выделении из твердого раствора. Процесс выделения при старении начинается с образования сферических зон. На очень ранней стадии старения они удлиняются в на­правлении матрицы и приобретают иглообразную форму. Диаметр частиц на этой стадии составляет 15—60 А, длина 160—2000 А, а плотность рас­пределения 2-1012 мм-3 или 3-1015 мм-3. Образование частиц приводит к возникновению в матрице сжимающих напряжений, ве­личина которых может достигать предела текучести.

Игольчатые выделения растут, приобретая сначала стержневидную, а затем пластинчатую форму фазы MgsSi (рис. приведён ниже). Максимум твердости отвечает моменту старения, предшествующему образованию пластинчатых частиц. Наибольший размер выделений перед началом разупрочнения составляет 0,03 мкм, что в 10 раз меньше, чем в других сплавах, упрочняемых при старении. Промежуточная фаза обладает частичной когерентностью с матрицей.







Рис. 110. Микроструктура сплава Аl — 0,9% Mg – 0.6% Si:

а — медленное охлаждение при закалке и старение при 177°С, 5 ч; грубые частицы (5-фазы, образовавшиеся в про­цессе охлаждения, мелкие выделения В-фазы, возникшие при старении, и зона, свободная от выделений вокруг частиц В’-фазы, х8000; б — закалка в воде и старение при 177°С, 5 ч; присут­ствует только В’-фаза, х40000 (данные Research Laboratory, Granges, Essem. Швеция): в — закалка в воде и старе­ние при 302°С. 1 ч, крупные квадратные пластинки В-фазы, х25000 (данные-Bnnbury Research Center, Alcan Int. Ltd.)


Избыток кремния, увеличивая пересыщение матрицы, приводит к повышению плотности распределения зон. При этом эффект упрочнения при старении возрастает. Скорость старения в условиях приложения высокого давления уменьшается .

Влияние факторов, определяющих процесс старения носит обычный характер. Наибольшие скорость старения и максимум упрочнения отвечают содержанию Mg2Si, несколько превышающему предельную растворимость в твердом состоянии. Холодная деформация ускоряет старение и уменьшает эффект упрочнения, но при достаточно большой степени деформации упрочнение превышает снижение эффекта дисперсионного отвердения. Холодная деформация после старения может привести к уменьшению прочности. На механические свойства состаренного материала существенно влияет также текстура. Закалка с очень высокой скоростью охлаждения способствует образованию весьма дисперсных выделений, поэтому для получения максимальных прочностных свойств требуется возможно большая скорость закалки. Закалка на воздухе уменьшает упрочнение при старении. Особенно это относится к сплавам с содержанием Mg2Si, отвечающим предельной растворимости. Сплавы с меньшей концентрацией можно закаливать на воздухе, особенно в случае применения последующего искусственного старения для повышения прочностных свойств. Закалка в среде с температурой старения может улучшить или ухудшить механические свойства в зависимости от температуры старения. Большое влияние на свойства оказывает перерыв между закалкой и искусственным старением. Если низкотемпературное старение происходит до образования зон определенного размера, то при последующем искусственном старении зоны растворяются не полностью, а максимум на изотермах прочностных свойств уменьшается и носит размытый характер. Эффект тем

значительнее, чем ниже температура старения и выше содержание Mg2Si. Это явление возникает уже через 1 ч старения при комнатной температуре. Нагрев до 227—277°С приводит лишь к частичному возврату в сплавах, состаренных при 127—177°С. Но путем использования специальной обработки возможно многократное получение эффекта возврата. Кратковременное предварительное старение (в течение нескольких минут при температуре выше комнатной) сразу после закалки подавляет старение при комнатной температуре. Небольшое повышение прочностных свойств, обусловленное интенсификацией процесса образования зародышей, возможно в результате кратковременной низкотемпературной (—33°С) обработки; при проведении всех этих обработок требуется очень точное соблюдение режима. Добавки меди, хрома, марганца и золота также влияют на эффект перерыва между закалкой и старением. Термомеханическая обработка с низко-, а затем высокотемпературным старением и пластической деформацией между этими ступенями старения улучшает свойства, но если содержание Mg2Si превышает 1% (ат.), кратковременное предварительное старение приводит к ухудшению механических свойств . Циклическое нагружение вызывает растворение и повторное образование зон ГП в течение каждого цикла

2.6. Быстрозакристаллизованные сплавы на основе алюминия и способы их получения

Способы обеспечения быстрой кристаллизации расплава, разработанные в нашей стране и за рубежом открыли возможность получения совершенно нового класса сплавов, свойства которых значительно превосходят свойства сплавов, изготовляемых по традиционной технологии, через слиток. В зависимости от способа отвода тепла из металлического расплава методы быстрой кристаллизации можно разделить на две группы:

1) с конвективной теплопередачей;

  1. с контактным охлаждением.


  1. Кристаллизация с конвективной теплопередачей:

Основным процессом получения сплавов с конвективной передачей тепла при кристаллизации частицы, является метод распыления. Этот способ заключается в том, что струя расправленного металла подается в форсунку и дробится струей газа или воды высокого давления. Образующиеся при этом мельчайшие капельки затвердевают налету. Скорость охлаждения частиц зависит от размера капель, сечения и скорости струи металла, теплопроводности и давления распыляющего газа или жидкости. Ее величина может меняться от 1*102 до 1*107 град/с. Размер частиц от 50 до 500 мкм. Одной из разновидностей процесса распыления является ультразвуковое газовое распыление, заключающееся в дополнительном воздействии на струю металла ультразвуковых колебаний. При этом удалось получить порошок с размером основной фракции 50 мкм. Скорость охлаждения при этом составляла 105 град/с.

Кроме способа газового распыления, достоинством которого является высокая производительность процесса, достаточно широко опробуются и другие способы получения частиц.

- Способ распыления с вращающимся диском

Расплав механически измельчается посредством быстро вращающегося диска, имеющего на поверхности острые кромки и охлаждается с помощью газа . Скорость охлаждения для частиц 70-80 мкм – 105 град/с и 107 град/с для частиц диаметром 10 мкм.

- Способ распыления с вращающимся электродом

Вращающаяся заготовка - электрод расплавляется электрической дугой и капли жидкого металла кристаллизуются в полете. Размер частиц 200 мкм (100-600 мкм), скорость охлаждения – 103 град/с и 101 град/с . Расплавление заготовки может осуществляться также электронным лучом, лазером, плазмой.


- Распыление из перфорированного стакана

Жидкий металл, попадая во вращающийся со скоростью 1000 ... 10000 1/мин стакан с отверстиями на образующей поверхности цилиндра, выбрасывается из отверстий в виде иглообразных частиц, длина которых зависит от скорости вращения стакана. Скорость охлаждения при этом составляет 102 - 103 град/с. Достоинством этого метода по сравнению с предыдущим является взрывобезопасностъ частиц.

2. Процессы с контактным охлаждением

В этих процессах теплопередача осуществляется посредством контакта с материалом, имеющим высокую теплопроводность. Как правило, это медные барабаны или шайбы с водяным охлаждением.

К способам быстрой кристаллизации с контактным охлаждение можно отнести следующие:

    • Способ расплющивания капель о барабан


Капли расплавленного металла направляются струей газа на периферию вращающегося барабана - подложки. Каждая капля кристал­лизуется отдельно и удаляется с барабана прежде, чем другая кап­ля попадает на ее место. Чешуйки обычно получаются диаметром 1-3 мм и толщиной 100 мкм и меньше. Скорость охлаждения 103 -I05 град/с .


    • Двуроликовое дробление


Это способ получения металлического порошка распылением струи жидкого металла, направленного между двумя роликами, вращающимися с большой скоростью. Теплопередача к роликам строго контролирует­ся. Регулируя процесс, можно получить чешуйки удлиненной формы толщиной до 200 мкм при скорости охлаждения 105 - 106 град/с. Изме­нением зазора между роликами и скорости вращения роликов, можно получить частицы неправильной и сферической формы, в виде чешуек или игл при толщине 60-100 мкм.


    • Способ распыления ударной волной Дувеца


Небольшое количество расплава, менее 500 мг, расплавляется индукционным методом в тигле. Под действием ударной волны, созда­ваемой давлением газа в 2-3 МПа или взрывом малого заряда, жидкий металл выстреливается, и капли при этом вылетают со скоростью не­скольких сотен метров в секунду. При ударе об охлаждаемую подлож­ку, частицы сплава превращаются в очень тонкие фольги неодинако­вой толщины в пределах 0,1-10 мкм. Этим способом можно достичь высоких скоростей порядка 109 град/с, но из-за малой производи­тельности этот метод применим лишь для лабораторных исследований.


- Способы "поршня и наковальни", "молота и наковальни",

"двух поршней"


Общий принцип этой технологии состоит в том, что капли жидкого металла обжимаются двумя поверхностями с высокой теплопроводностью. В методах поршня и наковальни и двухпоршневом способе соответственно расплавленная капля металла (меньше 1 г) падает между неподвижной "наковальней" и движущимся "поршнем" или между двумя движущимися поршнями. Общим для всех механизмом является пересечение падающей каплей луча фотоэлемента, что вызывает срабатывание привода поршня (поршней), который может быть пневматическим, электрическим или механическим.

В способе молота и наковальни порция металла помещается на горизонтальную металлическую "наковальню" и расплавляется электрической дугой, плазмой или потоком электронов. На расплавленную каплю падает "молот". Преимущество технологии двух поршней состоит в том, что кристаллизация осуществляется равномерно с двух сторон капли. Фольги получаются круглыми по форме, диаметром 25 мм и толщиной 5-30 мкм (60-120 мкм ). Скорость кристаллизации 104 - 106 град/с в зависимости от толщины. Метод применяется для изготовления единичных фольг в качестве лабораторных образцов.

- "Намораживание" пластинок электронным лучом

Пучок электронов фокусируется на нижнем конце вертикально расположенного прутка, расплавляя его. Капли металла, падая, ударяются о медный диск, вращающийся вокруг вертикальной оси под прутком. Центробежная сила и угловая скорость вытягивает каплю в тонкую продолговатую пластинку, которая после затвердевания отскакивает от диска. Размер пластинки и скорость подачи металла контролируются силой тока. Толщина пластинок и, следовательно, скорость охлаждения зависят от скорости вращения медного диска. Процесс необходимо проводить в вакууме.

    • "Намораживание" на холодную подложку


Жидкий металл выдавливается через отверстие в дне тигля. Намораживание происходит при ударе жидкой струи о вращающуюся холодную подложку (или о периферию вращающегося ролика). При условии жесткого контроля стабильности струи жидкого металла, по­лучаются ленточки шириной до 3 мм и толщиной 10 мкм. Можно изго­тавливать чешуйки и порошок. Скорости охлаждения при "намораживании" находятся в пределах 105 – 107 град/с. Этот способ широко применяется в лабораторных исследованиях и доведен до промышлен­ного состояния.

Для получения более широкой ленты (> 3 мм) разработаны другие способы, такие как литье плоской струей и наволакивание расплава .


Экстракция расплава


Этот способ имеет два варианта: экстракция расплава из тиг­ля и экстракция расплава из висящей капли, отличающиеся принци­пом подачи жидкого металла на охлажденную подложку. Металл сцеп­ляется на короткое время с кромкой диска, затем затвердевает, от­деляется от нее и падает в виде волокна. Изменив кромку диска, можно получать отдельные волокна, которые можно обрабатывать как порошок. Скорости охлаждения такие же, как в способе наморажива­ния на холодную подложку.

В процессе экстракции расплава из висящей капли отсутствует проблема тигля, а при экстракции расплава из тигля для исключена реакции между тиглем и расплавом можно применять гарнисажную плавку. Оба способа можно рекомендовать для химически активных металлов.

Толщина волокон равна, как правило, 10-20 мкм и зависит от сплава и скорости охлаждения.

В процессе экстракции расплава при помощи водоохлаадаемого вращащегося диска с зубчатой кромкой достигается скорость охлаж­дения 104 - 106 град/с.

Подобный способ сравнительно дешев, надежен и может быть усовершенствован для большинства сплавов.

Сплавы, полученные способом экстракции из расплава, превра­щают в компакт, используя различные способы деформации. Первона­чальный компакт может быть изготовлен непосредственно из спрес­сованных «вхолодную» частиц, либо частицы измельчаются до нужного гранулометрического размера.

В целом, анализируя материалы по получению быстрозаристалли-зованных частиц, можно сделать вывод, что при использовании мето­дов распыления достигается скорость охлаждения при кристаллизации порядка 104...106 град/с. Для получения более высокой скорости необходимо уменьшить размер порошка до 20...30 мкм, что делает его очень взрывоопасным. Для достижения более высоких скоростей охлаждения необходимо осуществлять охлаждение на подложке. Для чешуек или пластинок толщиной 0,1-1,0 мкм достигнуты скорости кристаллизации 108 –109 град/с. В печати сообщалось о скорости кристаллизации 1010 град/с, которую следует считать максимальной для данного способа охлаждения чешуек и пластинок.


3.ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


3.1 Обоснование выбора сплавов для

исследования

Сплавы системы Al – Si широко используются для производства поршней. Как правило, они классифицируются как:

  1. доэвтектические (содержание Si 6…9 %)

  2. эвтектические (10…12 %)

  3. заэвтектические сплавы (17…21 %)

Например: Mahle124, АК 12 D, Mahle 138,1379 и т.д.

Также используются поршни из сплавов системы Al – Cu – Mg – Fe – Ni (RR 58, АК 4-1 и т.д.). Эти сплавы обеспечивают повышенную жаропрочность при высоких температурах 200…250 o C, но по сравнению со сплавами системы Al – Si имеют более высокий коэффициент линейного расширения и более низкую износостойкость.

Для производства поршней используются различные технологические методы: литьё, штамповка, твёрдо – жидкая штамповка и т.д.

Существует ярко выраженная тенденция улучшения свойств, характеристик поршневых материалов путём использования гранулируемых сплавов (RSR/PM) и композиционных материалов с металлической матрицей (MMC).

Например, гранулируемый сплав RSR/PM 1379 (17…19 % Si) выпускается в российской промышленности.

Этот сплав имеет коэффициент линейного расширения ~ 17…18 ppm/oC , плотность 2,70 г/см3, теплопроводность около 120…130 W/moC, очень высокую износостойкость и высокую размерную стабильность.

Уменьшение плотности алюминиевого сплава может способствовать его легированию элементами, имеющими

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: