Xreferat.com » Рефераты по науке и технике » Галогениды серебра в фотографии

Галогениды серебра в фотографии

 Кристаллическая решетка галогенидов серебра

В твердом состоянии все галогениды серебра представляют собой ионные кристаллы. Это значит, что их кристаллическая решетка образована правильным чередованием катионов серебра Ag+ и анионов галогена Hal-, которые удерживаются на своих местах по преимуществу электрическими силами притяжения разноименных зарядов.

Решетки бромида и хлорида серебра AgBr и AgCl относятся к простейшим из возможных—кубическим типа поваренной соли, т. е. ионы в них расположены по трем взаимно перпендикулярным направлениям и расстояние между парой соседних ионов (так называемая постоянная решетки) по всем трем направлениям одинаково (рис. 1). Это расстояние составляет 2,88 А между ионами Ag+ и Вг- и вдвое больше между двумя последовательными ионами Ag+ или Вг-. В хлориде, оно составляет 2,77 А между ионами Ag+ и С1.- Что же касается нодида серебра Agl, то решетка его более сложна и меняется с изменением температуры; только выше 146 °С она становится кубической, но такие температуры для фотографии не представляют интереса.

В случае совместной кристаллизации нескольких галогенидов серебра в единой решетке все определяется тем, относятся, ли., их решетки к одному и тому же типу. В случае AgBr + AgCl, когда обе решетки однотипны и постоянные обеих решеток близки, решетка смешанных кристаллов любого состава относится к тому же типу, что и чистых, т. е. является кубической, причем постоянная ее меньше, чем у бромида, но больше, чем у хлорида. Среди анионов в решетке встречаются как Вг-, так и С1~, расположенные вполне случайно, но в пропорциях, соответствующих химическому составу кристалла. В случае разнотипных решеток, как это имеет место, например, для AgBr + AgI, картина более сложна. Пока примесь AgI невелика, решетка смешанного кристалла, остается такой, как у основного вещества, в данном случае кубической, но в равномерной .заменой части ионов Вг- ионами I- в решетке в количестве, соответствующем доле примеси. При этом вероятность двум ионам I- оказаться рядом очень мала, а значит, вероятность образования малого участка чистого Agl в большом кристалле AgBr тоже пренебрежимо мала. Однако по мере увеличения доли Agl эта вероятность растет, и при достаточно большой доле выделение: Agl из общего кристалла в самостоятельные участки вместо равномерного смешивания с AgBr становится почти неизбежным; вот почему возможности добавления иодида серебра к другим галогенидам ограничены.

Каждый ион в решетке обладает энергией, которая складывается из кинетической и потенциальной энергии его беспорядочных колебаний вокруг среднего равновесного положения. При наибольшем отклонении иона от среднего положения вся кинетическая энергия переходит в потенциальную, а величина последней равна работе, совершенной при перемещении иона в крайнее положение. Силы, удерживающие ион, являются силами притяжения и отталкивания зарядов по закону Кулона, за их счет и совершается ра” бота. Поскольку эти силы обратно пропорциональны квадрату расстояния, наибольшую роль играют силы-взаимодействия данного иона с ближайшими соседями, а их у каждого иона в кубической решетке шесть — сверху и снизу, спереди и сзади, справа и слева, причем действие их попарно уравновешивается.

Энергия решетки кристалла в целом складывается из энергий всех составляющих ее ионов, и хотя зависит от всех сил взаимодействия в решетке, но так как главный вклад в общую энергию вносят силы взаимодействия ближайших соседей, то именно на этой части энергии мы сосредоточим внимание; Если решетка идеальна, т. е. последовательность чередования и взаиморасположения ионов нигде не нарушена, то энергия решетки распределена. в среднем поровну между всеми ионами. Любое же нарушение решетки, т. е. правильного расположения ионов, означает нарушение попарного равновесия сил, и оно неизбежно облегчает ионам смещение из равновесного положения — притяжение со стороны одного соседа не уравновешивается полностью притяжением с противоположной стороны. Следовательно, вблизи нарушения всегда происходит местное отклонение энергии от средней в сторону уменьшения.

Как известно, если в данной точке пространства потенциальная энергия меньше, чем в окружающих точках, то попавшее в нее тело обладает большей устойчивостью. Так, шарик, вкатившийся в ямку, не израсходовал для этого никакой энергии извне, но выбраться из нее может только за счет внешнего воздействия; поэтому на дне ямки его положение более устойчиво, чем вблизи ее края или за ее пределами. Не случайно в кристаллах места с меньшей потенциальной энергией называют потенциальными ямами, а сравнивая их друг с другом, говорят об их глубине. Эти термины нам понадобятся в дальнейшем.

Нарушения, или, как их чаще называют, дефекты, решетки весьма разнообразны. Их подразделяют обычно по двум важнейшим признакам: во-первых, они бывают точечными, если затрагивают только один ион, и протяженными, если затрагивают несколько (иногда очень много) последовательных ионов, и, во-вторых, они бывают примесными, если обусловлены посторонними ионами, атомами, молекулами, находящимися либо внутри, либо на поверхности кристалла, и собственными, если присущи также химически чистым кристаллам. Начнем с последнего признака.

Из протяженных собственных дефектов назовем, прежде всего, дислокации, т. е. частичный сдвиг одного ряда атомов или ионов относительно соседнего — примеры есть на рис. 2. Далее, нередки случаи, когда кристалл формируется за счет сращивания нескольких более мелких и состоит из отдельных блоков, решетки которых образовывались независимо друг от друга и не согласованы между собой; границы между блоками также являются протяженными дефектами (рис. 3). Сходная картина наблюдается и в трещинах кристалла, когда решетки по обе стороны не совпадают. Наконец, можно отнести к протяженным дефектам и поверхность кристалла: ведь на ней в направлении, перпендикулярном к поверхности, ион всегда имеет соседа только с одной стороны и oi равновесии речи быть не может.

Из точечных собственных дефектов мы не станем обсуждать дефекты на поверхности еще не полностью достроенной, когда в каких-то ее точках просто недостает атома или иона. Нам интересны так называемые тепловые дефекты в завершенной решетке, возникновение которых связано с излишне большой амплитудой колебаний отдельных ионов в решетке. Поскольку энергия колебаний распределена равномерно между всеми ионами только в среднем, то в каждый момент имеются ионы с амплитудой (а значит и энергией) колебаний больше и меньше средней. В числе первых могут оказаться (хотя их и мало) такие, которые, уйдя от равновесного положения, уже не вернутся к нему — слишком далеко ушли. В результате связь их с решеткой нарушается, и они начинают свободно перемещаться по кристаллу между нормально расположенными ионами, не выходя, разумеется, за пределы кристалла; их называют межузельными ионами, поскольку нормальные положения принято называть узлами решетки. Место, которое такой ион занимал прежде, остается вакантным — это значит, что любой из ионов, соседних с этим местом, потерял соседа и равновесие вокруг него нарушено. Оба дефекта — межузельный ион и вакансия — важны для электропроводности кристалла, что вскоре выяснится при рассмотрении электрических свойств галогенидов серебра. Поскольку число таких дефектов тем значительнее, чем больше средняя амплитуда колебаний, а она растет, в свою очередь, с температурой кристалла, точечные тепловые дефекты играют тем более важную роль, чем температура выше.

Отметим здесь одну особенность бромида и хлорида серебра, не свойственную другим ионным кристаллам: в них точечные тепловые дефекты встречаются почти исключительно среди катионов, причем в довольно большом количестве. Так, при комнатной температуре до 0,01% всех ионов Ag+ переходит из узлов решетки в межузлия, т. е. по каждому из трех направлений почти каждый 20-й по порядку ион Ag+ отсутствует на своем месте. Среди анионов этого не наблюдается не только при комнатной температуре, но и при более высоких; даже вблизи точки плавления число анионных вакансий меньше числа катионных во многие тысячи раз.

Точечные дефекты возникают и за счет примесей. Если примесь присутствует в ионной форме, она может встроиться в ионную решетку, заняв там место катиона или аниона (возможно, того и другого), в зависимости от ее знака. Если заряд примесного. иона такой же, как основного (например, ион Na+ или I- в решетке AgBr), то влияние его на энергию и другие свойства решетки обычно невелико, хотя энергия взаимодействия в этом месте решетки слегка изменяется и возникает мелкая потенциальная яма (теперь эти термины вам уже известны). Более значительно влияние ионов с валентностью иной, чём у основных. Так, ионы Cd2+ или Рb2+ (а их вводят в AgBr в некоторых Специальных эмульсиях), занимая место одного катиона, сообщают решетке заряд двух катионов Ag+. Чтобы она осталась в целом нейтральной, как было без примесей, один из ближайших ионов Ag+ должен покинуть свое место и перейти на положение межузельного. Вместо двух узлов, заполненных одновалентными катионами, получится один, заполненный двухвалентным катионом, одна катионная вакансия и один межузельный катион, т. е. довольно значительное нарушение порядка в решетке.

С точечными примесными дефектами могут быть связаны и более сложные образования. Так, могут образовываться конгломераты из нескольких вакансий, межузельных и примесных ионов, а на поверхности кристаллов ионы Ag+, находясь на своих местах в узлах решетки AgBr, могут одновременно участвовать в образовании нароста, например другой соли серебра, скажем сульфида AgS или бромида другого металла (примесного); разумеется, такое соседство вызывает значительные нарушения порядка в соответствующих местах кристалла. Указанным путем, а возможно и другими, на поверхности могут возникать не только точечные, но и протяженные примесные дефекты, но даже самые крупные из них оказываются малы по сравнению с линейными размерами обычных фотоэмульсионных кристаллов.

Электропроводность галогенидов серебра

Галогениды серебра обладают высокой диэлектрической проницаемостью, т. е. способностью ослаблять внешнее электрическое поле: у хлорида серебра она равна 12,2, a y бромида—13,0. По этому признаку их следовало бы отнести к диэлектрикам, но подобное определение не вполне согласуется с другими электрическими свойствами галогенидов серебра. В частности, даже в темноте они обладают некоторой электропроводностью, хотя и слабой; на свету она резко возрастает, как и у многих полупроводников, а величина удельного сопротивления тоже заставляет отнести галогениды серебра скорее к полупроводникам, чем к диэлектрикам. Более подробное изучение электрических свойств галогенидов серебра показало, кроме того, что в темноте носителями тока в них служат ионы, а на свету — преимущественно электроны, что типично для так называемых фотопроводников. Оба факта заслуживают серьезного внимания,

Выше уже говорилось, что при не слишком низких температурах в кристаллах AgHal имеется заметное число межузельных ионов Ag+, способных перемещаться внутри кристалла, тогда как среди ионов Hal- межузельных практически нет вовсе. Если поместить кристалл AgHal между двумя электродами, в нем должен пойти ионный ток, что и подтверждается опытом. Ионы Ag+, доходя до катода, должны будут на нем восстанавливаться до металла; действительно, такое отложение серебра, т. е. своеобразный электролиз не в растворе, а в твердом теле, при достаточно длительном приложении поля тоже обнаружено на опыте. Читателю, привыкшему считать, что при электролизе происходит разложение вещества и поэтому отложение продуктов электролиза должно, идти на обоих электродах, может показаться странным отложение в случае галогенидов серебра только на катоде. Но нельзя забывать, что хотя в электролизе галогенида серебра фактически участвует лишь катионная часть решетки, но двигаются в кристалле не только положительные заряды в виде межузельных ионов Ag+: подвижность имеют и вакансии, оставшиеся от этих ионов.

Чтобы понять, как это происходит, применим рассуждение, весьма обычное для физики: если в какой-то точке недостает положительного заряда, то в ней как бы появился избыточный отрицательный заряд, причем во внешнем поле такой вроде бы воображаемый заряд обладает многими особенностями реального заряда. Обратимся к рис. 4. Пусть один из подвижных ионов Ag+, оставив после себя вакансию, проходит при своем движении к катоду мимо другой вакансии. Не исключено, что он окажется захваченным этой вакансией и займет ее. Тогда об этом событии можно рассказать и как о перемещении катиона в направлении катода из точки Р в точку Q, и как о перемещении отрицательной вакансии в направлении анода из точки Q в точку Р. То и другое—перенос заряда, т. е. ток, и нет способа установить, какая из двух версий правильнее по существу. Поэтому принято говорить, что есть и движение катионов, и движение катионных вакансий, а участие их в прохождении тока и электролизе считается равноправным. Физически разница состоит в том, что при движении катионов переносится масса и мы видим отложение вещества на катоде, а при движении вакансий переносится пустота и не только не происходит отложение вещества на аноде, но даже и создается вблизи него своеобразная полость, в которой все больше и больше недостает серебра, ушедшего к катоду, и остается только галоген.

Электропроводность галогенидов серебра в темноте сильно зависит от условий изготовления кристалла, его биографии, что особенно заметно при температурах выше комнатной: здесь различия между отдельными образцами могут доходить до десятков и даже сотен раз. На темновую проводимость галогенидов серебра сильно влияют также примеси солей с валентностью иной, нежели у Ag+ и Наl-: как уже говорилось, каждый такой примесный нон, включенный в решетку, увеличивает в ней число подвижных ионов и их вакансий. Кроме того, ионная проводимость очень сильно зависит от температуры, поскольку определяется именно тепловыми точечными дефектами, а число их при повышении температуры резко возрастает: например, в бромиде серебра при повышении температуры от 0 до 20 °С — более чем втрое. Однако для дальнейшего без большой ошибки можно считать, что при комнатной температуре для микрокристаллов бромида серебра в фотоэмульсиях удельная проводимость довольно близка к 10-11 м •Oм –1 • мм-2, а удельное сопротивление— соответственно к 1011 Oм • мм-2 мм-; для хлорида серебра удельное сопротивление раз в десять выше.

При освещении электропроводность галогенидов серебра резко возрастает, причем носителями тока становятся преимущественно электроны (сохраняющаяся ионная проводимость на фоне этого тока вообще почти незаметна). Значит, в кристаллах галогенида серебра, как и всех полупроводников, а также многих твердых диэлектриков, свет вызывает внутренний фотоэффект. Выяснилось, что электроны отрываются светом от ионов Hal"; после отрыва электрона место его освобождения представляет собой анион без электрона, т. е. нейтральный атом Hal. С решеткой такой атом почти не связан, поскольку силы в ней по преимуществу электрические, а он нейтрален, и это дает ему возможность уйти из решетки. Однако размеры атома достаточно велики, чтобы мешать ему свободно перемещаться по кристаллу, и поэтому его движение происходит примерно таким же образом, каким перемещается вакансия (было показано на рис. 4). Вероятно, теперь читатель уже не удивится, если место отсутствия электрона мы станем рассматривать как своего рода положительный заряд (его так и называют—“положительная дырка”) и будем говорить не только о движении электронов к аноду, но и о движении дырок к катоду; схематически такое движение показано на рис. 5.

Фотоэффект в любом веществе характеризуют так называемой красной границей, т. е. той наибольшей длиной волны, при которой свет еще способен вызывать фотоэффект в данном веществе. Для хлорида серебра красная граница лежит вблизи 380 нм, т.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: