Xreferat.com » Рефераты по науке и технике » Феноменологическое обоснование формы линейного элемента шварцшильдова решения уравнений гравитационного поля ОТО

Феноменологическое обоснование формы линейного элемента шварцшильдова решения уравнений гравитационного поля ОТО

0, так и ∂μrметр = 0. Это подтверждает принципиальную невозможность при неравенстве a бесконечности, а следовательно, и при неравенстве b нулю [4] лишь = 0, при котором каклокального выполнения условия σ /∂∂σrметр = 0, так и ∂H/∂rметр = 0. В СО вещества, в далеком прошлом равномерно заполнявшего все фундаментальное пространство и при этом калибровочно-эволюционно самосжимавшегося в этом пространстве, выполнение условий (∂p/∂rметр)t = 0, /∂(∂μrметр)t = 0 принципиально невозможно. Это вызвано несоблюдением одновременности в СОФВ событий, одновременных в СО молекул вещества, и наличием пространственной синхронности эволюционного изменения в космологическом времени (отсчитываемом не в СО вещества, а в СОФВ [4]) давления в веществе и собственной плотности его массы. Поэтому, условие = 0 (σp= –μ c2), соответствующее так называемому вакуумоподобному состоянию физической среды [7] и вселенной де Ситтера [6...8], в собственной СО протовещества принципиально невыполнимо и может рассматриваться лишь как гипотетическое.

Возникновение во Вселенной гравитационных макрополей, как показано в [3, 4], вызвано эволюционным самосжатием вещества в фундаментальном пространстве и наличием электромагнитного взаимодействия между элементарными частицами соседних атомов и молекул вещества. Если бы не было ван-дер-ваальсовых сил межмолекулярного взаимодействия (приведших в процессе рекомбинации протонов и электронов к разрыву цельной газовой среды Вселенной на отдельные скопления молекул газа и заставивших эти молекулы эволюционно самосжиматься совместно), то каждая молекула так и продолжала бы подобно галактикам отдельно сама по себе сжиматься в фундаментальном пространстве и физическая макронеоднородность этого пространства а, следовательно, и гравитационные макрополя в нем так бы и не возникли. В СО же каждой из отдельных молекул газа все остальные молекулы (атомы) так бы и продолжали непрерывно инерциально удаляться от нее со скоростью Хаббла. Поэтому, глобально статическую (без явления расширения) модель Вселенной с метрически стабильным собственным пространством построить принципиально не возможно ни при квазиравномерном распределении плотности материи в фундаментальном пространстве, ни при имевшем место в далеком космологическом прошлом действительно равномерном распределении этой плотности заполнявшего всю Вселенную газообразного вещества. Ввиду метрической макрооднородности фундаментального пространства в этом далеком космологическом прошлом, линейный элемент калибровочно-эволюционно самосжимавшегося газообразного вещества полностью соответствовал найденному Леметром [6,9] и, независимо от него, Робертсоном [6,10] линейному элементу вещества в несопутствующей ему СО, пространство которой является евклидовым. В этом пространстве (фактически являющемся абсолютным пространством Ньютона) галактики, согласно гипотезе Вейля [11, 12], покоятся (если не принимать во внимание их малых индивидуальных скоростей движения). Вид линейного элемента в собственных пространствах эволюционно самосжимающихся молекул газа при этом лишь формально соответствовал линейному элементу вселенной де Ситтера [4, 7]. Ввиду наличия соответствующих молекулам газа физических и метрических микронеоднородностей их собственных пространств (их гравитационные радиусы нетождественно равны нулю) метрику ПВК отдельных молекул следует рассматривать все же как вырожденную шварцшильдову метрику. В математической модели Вселенной де Ситтера, дополненной в [6] гипотезой Вейля, кривизна собственного пространства вещества, равномерно распределенного в фундаментальном пространстве (в абсолютном пространстве Ньютона – Вейля), может быть обусловлена наличием лоренцева превышения сокращения в этом фундаментальном пространстве радиальных размеров эволюционно самосжимающихся молекул вещества над сокращением меридианальных их размеров. В модели же Вселенной Эйнштейна кривизна собственного пространства вещества не имеет никакого физического смысла, так как в этой модели непосредственно не предусмотрено явление расширения Вселенной. А, следовательно, не предусмотрено в ней и несоблюдение одновременности в собственном времени молекул вещества событий, одновременных в космологическом времени. А тем самым, не предусмотрена и неравномерность средней плотности материи во Вселенной в собственном пространстве любой из молекул вещества в один и тот же момент собственного времени этой молекулы. Это и не позволяет рассматривать модель Вселенной Эйнштейна как достоверную даже в очень грубом приближении.

Выводы

В соответствии со всем здесь изложенным рассмотренная нами физическая модель, базирующаяся на основных принципах калибровочно-эволюционной теории [2...4] и полностью соответствующая математической модели ПВК ОТО, дает объективное и внутренне непротиворечивое объяснение основных особенностей релятивистской теории гравитации и при этом, как показано в [4], лишена, в отличие от других известных интерпретаций ОТО, парадоксальных явлений и физических объектов.

Список литературы

Ньютон И. Математические начала натуральной философии. М.: Наука, 1989.

Даныльченко П.И. Псевдоинерциально сжимающиеся системы отсчета координат и времени. В сб. Калибровочно-эволюционная теория Мироздания (пространства, времени, тяготения и расширения Вселенной). Винница, 1994, вып. 1, с. 17.

Даныльченко П.И. Основы калибровочно-эволюционной теории Мироздания (пространства, времени, тяготения и расширения Вселенной). Винница, 1994; Интернет издание, 2005.

Калибровочно-эволюционная интерпретация специальной и общей теорий относительности. Киев, НиТ, 2005.

Даныльченко П.И. О возможностях физической нереализуемости космологической и гравитационной сингулярностей в ОТО. В сб. Калибровочно-эволюционная интерпретация специальной и общей теорий относительности, Вінниця, О. Власюк, 2004, с. 35.

О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности. Киев, НиТ, 2006.

Даныльченко П.И. Калибровочные основы специальной теории относительности. В сб. Калибровочно-эволюционная интерпретация специальной и общей теорий относительности, Вінниця, О. Власюк, 2004, с. 17.

Калибровочная интерпретация СТО. Киев, НиТ, 2005.

Мёллер К. Теория относительности. М.: Атомиздат, 1975.

Глинер Э.Б. УФН, 2001, т. 172, с. 221.

De Sitter W. Mon. Not. R. Astron. Soc., 1916, v. 76, p. 699; v. 77, p. 155.

Lemaitre G.J. Math. and Phys., 1925, v. 4, p. 188.

Robertson H.P. Philos. Mag., 1928, v. 5, p. 839.

Weyl H. Phys. Z., 1923, b. 24, s. 230.

Weyl H. Philos. Mag., 1930, v. 9, p. 936.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: