Xreferat.com » Рефераты по науке и технике » История физики: строение материи

История физики: строение материи

модель, развитую впоследствии Резерфордом, о существовании центрального положительного ядра, вокруг которого располагаются электроны. Эта модель позволяла объяснить эксперимент по прохождению -частиц через тонкие металлические пластинки.

В 1913 г. голландский физик Антониус Ван ден Брук (1870-1926) выдвинул идею об атомном номере, предположив, что ядерный заряд равен порядковому номеру элемента в периодической системе Менделеева.

В том же году английский физик Генри Мозли (1887-1915) установил свой закон о том, что частота основных спектральных линий рентгеновских лучей пропорциональна квадрату числа, которое изменяется на единицу при переходе от одного элемента к соседнему. Он однозначно связал эту величину с зарядом внутреннего ядра.

В 1920 г. английский физик Джеймс Чадвик (1891-1974) по отклонению -частиц при столкновении с различными металлами установил, что ядерные заряды меди серебра и платины равны 29,3; 46,3 и 77,4, что практически соответствует их атомным номерам: 29, 47 и 78. Все это было подтверждением модели Резерфорда. Сам Резерфорд при бомбардировке азота -частицами получил протоны, осуществив тем самым первую ядерную реакцию: захват -частицы ядром азота с последующим расщеплением на протон и атом кислорода.

В 1912 г. Дж.Дж.Томсон вслед за Содди, который ввел понятие изотопов для радиоактивных элементов, обнаружил изотопы неона. Уже после войны в 1919 г. Астон, сконструировав масс-спектрограф, подтвердил существование двух изотопов неона, а позднее обнаружил наличие изотопов у многих элементов.

Астон Френсис Уильям (01.09.1877-20.11.1945) - английский физик и химик, член Лондонского королевского общества (1921), иностранный член-корреспондент АН СССР (1924). Родился в Хорборне в семье фермера и торговца. Окончил Бирмингемский университет (1898), где работал в 1903-09. В 1910-19 - в Кавендишской лаборатории, с 1919 - в Тринити колледж Кембриджского университета.

Работы в области атомной и ядерной физики, радиохимии. С помощью сконструированного масс-спектрометра открыл большое количество изотопов у многих химических элементов и изучил их закономерности (Нобелевская премия по химии, 1922). В 1913 предложил метод газовой диффузии для разделения изотопов, в 1919 - электромагнитный метод. Постоянно повышая разрешающую способность создаваемых им спектрометров, измерил с большой точностью атомные массы элементов и показал, что масса ядра отличается от суммы масс входящих в него частиц. Определив дефекты масс ядер различных изотопов, в 1927 построил первую кривую упаковочных коэффициентов, характеризующих энергию связи атомных ядер. Открыл изотоп уран-238 (1931).

Открытие изотопов еще более усложнило вопрос о строении материи. Но сейчас превалирует концепция, что отдельным элементом считается вещество с определенным зарядом, отвечавшим за его химические свойства, а у элемента есть изотопы, отличающиеся рядом физических свойств: масса, радиоактивность, спектр рентгеновского излучения.

В своих исследованиях Астон заметил, что с ростом порядкового номера элемента наблюдается отклонение от "правила целого числа". В 1920 г. ему пришла идея объяснения этого дефекта массы с использованием выводов теории относительности: при соединении нескольких протонов в ядро часть массы переходит в энергию связи. И это до сих пор является основой развивающейся теории ядра, а также всей ядерной энергетики.

Принципиальным развитием модели Резерфорда было предложение в 1913 г. Бором своей теории электронных орбит. Одной из предпосылок этой теории были серии спектральных линий водорода, обнаруженные в 1885 г. швейцарским ученым Иоганном Якобом Бальмером (1825-1898), в 1906 г. американским физиком Теодором Лайманом (1874-1954) и в 1909 г. немецким физиком Фридрихом Пашеном (1865-1947). Эти серии в видимой, ультрафиолетовой и инфракрасной областях спектра подчинялись очень простой закономерности: частоты были пропорциональны разности обратных квадратов целых чисел. Бор объяснил устойчивость планетарной модели атома и одновременно эти спектральные данные с позиций квантовой теории, введя понятие стационарных состояний для электронов (главное квантовое число), между которыми только и могут совершаться переходы с излучением. Проведенные расчеты для атома водорода дали хорошее согласие с экспериментом, но для других элементов получалось расхождение с опытными данными. Позднее немецкий физик Арнольд Иоганн Вильгельм Зоммерфельд (1868-1951) развил модель Бора, введя в рассмотрение эллиптические орбиты (радиальное и азимутальное квантовые числа) и зависимость массы от скорости. Это несколько улучшило теорию, но полного объяснения экспериментальных результатов не дало.

Эти теории были полуклассическими, т.е. в классическую картину вводились квантовые ограничения, и поэтому требовали развития. В 1918 г. Бор сформулировал принцип соответствия: при разработке теории следует руководствоваться тем, что при увеличении квантового числа описание системы должно асимптотически приближаться к классическому. Т.е. законы новой физики должны переходить в классические, когда квантовая дискретность стремится к нулю.

Вместе с тем, при развитии теории строения материи появляется ряд законов, которые не имеют аналогов в классической физике. Так в 1925 г. Паули сформулировал свой запрет о невозможности существования двух одинаковых электронных состояний, который не имеет вразумительного объяснения, но использование его на практике дает хорошие результаты. С применением запрета Паули и принципа насыщения уровней к 1927 г. была в целом построена электронная структура всех известных к тому времени 92 элементов. Создание структуры электронных оболочек атомов позволила объяснить периодический закон Менделеева и многие химические свойства различных элементов (валентность, окислительно-восстановительные свойства и т.п.)

Далее продолжалось уверенное развитие квантовой теории и применение ее к описанию строения материи, начиная от атомов и молекул и кончая твердым телом. Развитие физики твердого тела тесно связано с именами немецкого физика Вальтера Шоттки (1886-1976), американского физика Феликса Блоха (1905-1983), французского физика Леона Бриллюэна (1889-1969) и других, заложивших основы зонной теории твердого тела. Применение этой теории стимулировало развитие новых областей техники, в частности, техники полупроводниковых приборов. В конце 40-х годов американские физики Джон Бардин (р.1908), Уолтер Браттейн (1902-1987) и Уильям Брэдфорд Шокли (1910-1989) построили первые полупроводниковые транзисторы (Нобелевская премия по физике, 1956), обеспечившие бурное развитие техники. В настоящее время полупроводниковая техника и микроэлектроника интенсивно развиваются как за счет использования новых физических представлений, так и в результате совершенствования технологии.

В 20-х годах 20 века интенсивно продолжались работы по более глубокому изучению строения материи. В 1925 г. по предложению Резерфорда Блекетт провел тщательный эксперимент, в котором впервые наблюдал появление протона в первой ядерной реакции (Нобелевская премия по физике, 1948), правильно интерпретированной самим Резерфордом. В 1928 г. русско-американский физик Георгий Антонович Гамов (1904-1968) развил теорию о туннельном эффекте, в соответствии с которой более эффективными "снарядами" для бомбардировки ядер являются протоны, а не -частицы. В связи с этим началась разработка методов получения высокоэнергетичных протонов. Оригинальный и наиболее эффективный способ ускорения заряженных частиц предложил американский физик Эрнест Орландо Лоуренс (1901-1960) и создал в 1930-32 г.г. первые циклотроны (Нобелевская премия по физике, 1939).

В 1932 г. в лаборатории Резерфорда английский физик Джон Дуглас Кокрофт (1897-1967) и ирландский физик Эрнест Томас Синтон Уолтон (р.1903) с помощью протонов, полученных на ускорителе собственной конструкции, расщепили ядро лития с образованием двух -частиц (Нобелевская премия по физике, 1951). При этом было экспериментально доказано, что вещество преобразуется в энергию в соответствии с идеей Астона и теорией относительности.

В том же году на основании экспериментов по бомбардировке бериллия и лития -излучения, проведенных супругами Жолио-Кюри, Чадвик открыл нейтрон (Нобелевская премия по физике, 1935), а американский физик Гарольд Клейтон Юри (1893-1981) открыл дейтерий (Нобелевская премия по физике, 1934).

Жолио-Кюри Ирэн (12.09.1897-17.03.1955) – французский физик и радиохимик, почетный член ряда академий наук и научных обществ, иностранный член-корреспондент АН СССР (1947), медали Маттеучи, Лавуазье. Родилась в Париже в семье П.Кюри и М.Склодовской-Кюри. Окончила Парижский университет (1920), степень доктора – 1925. С 1918 работала под руководством М.Кюри в Институте радия, с 1934 – директор Института радия и заведующая кафедрой физики Парижского университета. В 1936 – помощник статс-секретаря по научно-исследовательским делам в правительстве Франции, в 1946-50 вела большую работу в Комиссариате по атомной энергии.

Работы в области радиоактивности, ядерной физики, ядерной химии. В 1934 вместе с Ф.Жолио-Кюри открыла явление искусственной радиоактивности (Нобелевская премия по химии, 1935) и получила искусственные радиоактивные изотопы. В том же году они открыли позитронную радиоактивность. В 1931 при исследовании излучения бериллия при бомбардировке -частицами они сделали вывод о корпускулярной природе этого излучения, что привело к открытию нейтрона Дж.Чадвиком. В 1938 Ирен совместно с П.Савичем установили появление лантана при облучении нейтронами урана, на основании чего О.Ган и Ф.Штрассман открыли явление деления ядер урана.

Занималась общественной деятельностью, во время оккупации Франции (1940-44) вела активную антифашистскую борьбу, после войны выступала против использования атомной энергии в военных целях, была членом Всемирного Совета Мира.

Жолио-Кюри Фредерик (19.03.1900-14.08.1958) – французский физик, член Парижской (1943) и многих других академий наук и научных обществ, иностранный член АН СССР (1947), медали П.Кюри, Маттеучи, Барнарда, Хьюза, Лавуазье. Родился в Париже в семье коммерсанта. Окончил Школу физики и химии (Париж, 1923), степень доктора (1930). В 1925-30 работал в Институте радия и преподавал в различных учебных заведениях (Париж). В 1926 женился на И.Кюри и с 1928 появляются их общие работы, подписываемые с 1934 Жолио-Кюри. С 1930 – научный сотрудник Национального фонда наук, с 1932 также преподавал в Сорбонне. С 1937 – профессор Коллеж де Франс и одновременно руководитель лаборатории атомного синтеза в Национальном центре научных исследований (в 1944-45 – директор). В 1946-50 – верховный комиссар организованного по его инициативе Комиссариата по атомной энергии, в мае 1950 правительство Франции отстранило его от руководства из-за отказа вести ядерные исследования в военных целях. С 1956 – профессор Парижского университета, руководитель лаборатории в Институте радия и директор Института ядерной физики в Орсе.

Работы в области ядерной физики, ядерной химии, ядерной техники. Вместе с И.Кюри в 1928 начал исследование ядерных реакций при облучении легких ядер -частицами. Обнаружили способность бериллиевого излучения выбивать ядра водорода, гелия и азота. Дж.Чадвик показал, что ответственным за этот процесс является поток нейтронов. В 1934 Ф.Жолио-Кюри показал, что масса нейтрона больше массы протона, что свидетельствовало о нестабильности нейтрона. В 1933 супруги Жолио-Кюри впервые получили фотографию со следами электрона и позитрона, рожденных -квантом (образование пар), а Ф.Жолио-Кюри вместе с Ж.Тибо первыми наблюдали аннигиляцию электронов и позитронов.

В 1935 супруги Жолио-Кюри получили Нобелевскую премию за открытие искусственной радиоактивности, вызванной быстрыми -частицами. Они предсказали, что искусственная радиоактивность может быть также вызвана нейтронами, дейтронами, протонами. Ф.Жолио-Кюри почти одновременно с О.Ганом и Ф.Штрассманом экспериментально открыл деление урана и одним из первых пришел показал возможность развития цепной ядерной реакции с выделением огромной энергии вследствие появления вторичных нейтронов. В 1939-40 разработал ряд технологических проектов освобождения ядерной энергии и начал с сотрудниками работы по созданию ядерного реактора на тяжелой воде, которые были прерваны из-за оккупации Франции фашистами. В 1940-44 был участником Движения Сопротивления, возглавлял "Национальный фронт", в его лаборатории изготовлялась взрывчатка. После войны возобновляет ядерные исследования, в 1948 осуществляет запуск первого французского циклотрона и экспериментального ядерного реактора на тяжелой воде.

Ф.Жолио-Кюри - выдающийся общественный деятель, с 1950 - председатель Всемирного Совета Мира, в 1951 удостоен Международной Ленинской премии "За укрепление мира между народами". Президент Французского физико-химического общества (1936-38), один из основателей и президент (с 1946) Всемирной федерации научных работников, с 1947 президент общества "Франция-СССР".

Открытие нейтрона и дейтерия почти сразу привело к изменению представлений о строении атома и советский физик Дмитрий Дмитриевич Иваненко (1904-1994) предложил протонно-нейтронную модель ядра, которая стала господствующей в физике.

В 1933-34 г.г. супруги Жолио-Кюри, проводя бомбардировку -частицами легких элементов (B, Al, Mg), установили испускание позитронов, а также образование новых искусственных радиоактивных элементов. В дальнейшем работы по получению радиоактивных изотопов были продолжены с применением бомбардировки ускоренными протонами и дейтонами. В 1934 г. Ферми предложил бомбардировку нейтронами и показал, что ее эффективность существенно повышается при использовании медленных нейтронов. С применением бомбардировки нейтронами Ферми с сотрудниками, а также немецким ученым Отто Гану (1879-1968) и Лизе Мейтнер (1878-1968) удалось открыть первые трансурановые элементы: нептуний и плутоний.

При бомбардировке урана нейтронами в 1938 г. Ган совместно с немецким физиком и химиком Фрицем Штрассманом (1902-1980) открыл деление ядер урана (Нобелевская премия по химии, 1944). Это явление было практически одновременно правильно интерпретировано как ими самими, так и Лизе Мейтнер, немецко-английским физиком Отто Робертом Фришем (1904-1979) и Фредерико Жолио-Кюри. Мейтнер и Жолио-Кюри предсказали возможность развития цепной реакции вследствие освобождения избыточного числа нейтронов при делении. Развитие этого представления нашло реализацию в создании промышленных ядерных реакторов (в дальнейшем - атомной энергетики) и атомной бомбы с использованием ядерных реакций деления урана-235 и плутония.

В 1934 г. при исследовании космических лучей Андерсон обнаружил, а в 1937 окончательно подтвердил открытие нового типа частиц - мезонов, возможность существования которых теоретически показал Юкава.

Юкава Хидэки (1907-1981) – японский физик, член Японской (1946) и ряда других академий наук, иностранный член АН СССР (1966). Родился в Токио в семье профессора геологии. Окончил университет в Киото (1929 - магистр). В 1932-33 там же преподавал, 1933-39 – в университете в Осаке, с 1939 - в Киотском императорском университете, 1953-70 – там же директор Института фундаментальной физики.

Работы в области квантовой механики, ядерной и мезонной физики, теории элементарных частиц. Развивая идеи И.Е.Тамма и Д.Д.Иваненко об обменном характере ядерных сил, в 1935 выдвинул гипотезу о частицах с массой около 200 электронных масс (мезонов), ответственных за перенос ядерного взаимодействия между нуклонами (Нобелевская премия, 1949). -мезоны были обнаружены экспериментально в 1947. Развил основные положения мезонной теории, получил выражение для взаимодействия нуклонов (потенциал Юкавы). Совместно с С.Сакатой предсказал в 1935 К-захват, в 1938 построил скалярную теорию ядерных сил и ввел нейтральный мезон для объяснения зарядовой независимости ядерных сил. В 1953 выдвинул идею промежуточного бозона.

Но вскоре выяснилось, что обнаруженные частиц по ряду своих параметров отличаются от мезонов, ответственных за перенос ядерного взаимодействия. И только в 1947 г. были открыты частицы, полностью соответствующие предсказаниям японского физика-теоретика. В то же время появилась идея о поле ядерных сил, обеспечивающем устойчивость ядра и природа которого еще до конца не ясна. Характерными особенностями этих сил являются очень малый радиус действия и чрезвычайная интенсивность. Существует капельная модель ядра, предложенная Бором.

Во второй половине 20 века при исследовании ядерных реакций было открыто множество элементарных частиц, большой вклад в систематизацию которых внес Гелл-Манн.

Гелл-Манн Мюррей (р.15.09.1929) - американский физик, член Национальной АН (1960), Лондонского королевского общества, премии Хейнемана и Лоуренса, медали Франклина и Карти. Родился в Нью-Йорке в семье эмигрантов из Австрии. В пятнадцатилетнем возрасте поступил и в 1948 окончил Йельский университет, степень доктора - 1951 (Массачузетский технологический институт). В 1952-54 работает в Чикагском университете, с 1954 - в Калифорнийском технологическом институте (с 1956 - профессор).

Работы в области квантовой теории поля, ядерной физики, физики элементарных частиц. В 1953 ввел понятие странности - нового квантового числа для характеристики элементарных частиц и открыл закон ее сохранения. В рамках своей схемы классификации частиц предсказал новые частицы, выдвинул модель "глобальной симметрии". Совместно с Р.Фейнманом разработал теорию слабого взаимодействия (1958). В 1961 предложил модель векторной доминантности и независимо от Ю.Неемана систематику элементарных частиц (система симметрий Гелл-Манна - Неемана), с помощью которой предсказал новую элементарную частицу (экспериментально обнаружена в

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: