Xreferat.com » Рефераты по науке и технике » История космических исследований

История космических исследований

сельском хозяйстве—2500 млн. долл., в наземном транспорте—100 млн.; в лесной промышленности—45 млн.; в водном хозяйстве—3000 млн. долл. Таким образом, суммарный эффект в хозяйственных отраслях Соединенных Штатов от такой системы составит около 6 млрд. долл. Для всего мира эта цифра возрастет во много раз.

По мнению зарубежных ученых, прогнозы погоды с достоверностью 90—95% для всего земного шара на трое суток вперед с помощью космической метеорологической системы обеспечат ежегодную экономию около 60 млрд. долл.

Для составления прогнозов Гидрометеослужбы СССР широко используются спутники “Метеор”, на основе которых в 1967 г. была создана метеорологическая космическая  система. Она, по далеко не полным данным, позволяет сохранить ежегодно материальные ценности на сумму около 700 млн. руб.

Метеорологическая система “Метеор” состоит из метеорологических спутников, находящихся на орбитах, наземного комплекса приема, обработки и распространения информации, а также службы контроля состояния бортовых систем спутников и управления ими.

Метеорологический спутник состоит из двух герметичных отсеков: приборного, находящегося в его нижней части и содержащего научную аппаратуру, и энергоаппаратурного, в котором размещаются основные служебные системы. С этим отсеком конструктивно связан механизм электропривода панелей солнечных батарей. Продольная ось спутника постоянно направлена к центру Земли. Спутник ориентирован также по двум другим осям, направленным вдоль траектории и перпендикулярно к плоскости орбиты. Стабилизируется он с помощью электро-маховичной системы. Солнечные батареи с помощью специальной системы ориентации и стабилизации постоянно располагаются плоскостями панелей перпендикулярно солнечным лучам. Направление оси спутника контролируется датчиками теплового излучения Земли, а для ориентации солнечных батарей используются специальные фотоэлементы. Система терморегулирования обеспечивает требуемый режим работы внутри спутника.

Метеорологическая аппаратура спутника состоит в основном из телевизионной (ТВ), инфракрасной (ИК) и актинометрической (АК) систем. Она может работать циклами различной продолжительности и включается по заданной программе или по командам с Земли. ТВ и ИК снимки позволяют выявить особенности структуры полей облачности, не доступные наблюдениям с наземной сети станций, и сделать выводы не только о положении, но и об эволюции соответствующих синоптических объектов и воздушных масс. Совместная ТВ и ИК информация позволяет сделать более надежную  оценку  синоптической обстановки и характера развития атмосферных процессов.

АК аппаратура предназначена для измерения радиации, уходящей от Земли. В ее составе имеются два сканирующих узко-секторных прибора, один — для диапазона 0,3—3 мкм, а другой для диапазона 3—30 и 8—12 мкм. Это позволяет исследовать отражательные и излучательные свойства облаков и открытых участков земной поверхности, а также радиационный баланс системы Земля—атмосфера.

За один оборот вокруг Земли спутник “Метеор” получает ТВ и ИК информацию с территории около 8% и о радиационных потоках—с 20% площади земного шара. Система из двух спутников, находящихся на круговых околополярных орбитах высотой около 630 км, плоскости которых пересекаются под углом 95°, дает в течение суток информацию с половины поверхности Земли. При этом каждый из районов планеты наблюдается с интервалом 6 ч.

В СССР создана также наземная система сбора, обработки и распространения метеоинформации, построенная на использовании электронно-вычислительных машин. Получаемая информация оформляется в виде снимков, на которые наносится сетка географических координат, свободных от перспективных искажений, приведенных к одному масштабу и удобных для сравнения с синоптическими картами. Результаты обработки данных АК аппаратуры представляются в виде цифровых карт с автоматически нанесенной на них сеткой координат и изолиниями. Полученная информация используется для международного обмена. Уже в течение ряда лет ученые социалистических стран ведут в рамках программы “Интеркосмос” исследования облачности, радиационного и теплового баланса системы Земля — атмосфера по спутниковым данным. В результате этой работы специалисты Болгарии, Венгрии, ГДР, Румынии и Советского Союза создали совместную книгу “Использование данных о мезомасштабных особенностях облачности в анализе погоды”. Это издание имеет практическое значение для оперативной работы синоптиков-прогнозистов. Большой практический интерес представляет также совместная работа ученых этих стран над усовершенствованием методов получения полей метеорологических элементов на основе спутниковой информации. В ряде социалистических стран создаются бортовые приборы, устанавливаемые на советских метеорологических спутниках, а также наземная аппаратура для приема информации со спутников в режиме непосредственной передачи.

Большие возможности для оперативного наблюдения погодных явлений имеют пилотируемые космические корабли и станции, так как космонавт может немедленно дать сведения о тех или иных погодных явлениях, не дожидаясь специальной обработки метеоинформации в наземном центре. В процессе полета космических кораблей “Союз” и орбитальных станций “Салют” был получен ряд ценных сведений, используемых в работе Гидрометцентра СССР.

Метеорологические системы как в СССР, так и в других странах непрерывно совершенствуются. Можно предполагать, что в будущем в метеорологическую систему войдут космические аппараты, расположенные на трех ярусах. Первый ярус составляет долговременные обитаемые орбитальные станции. Они обеспечат визуальные наблюдения геосферы и быстропротекающих метеорологических явлений, а также, приливов, обвалов, пыльных и песчаных бурь, цунами, ураганов, землетрясений. Второй ярус — это автоматические спутники типа “Метеор” на полярных и приполярных орбитах высотой 1—1,5 тыс. км. Основное их назначение — поставлять информацию, необходимую для численных методов прогнозирования погоды в глобальном и локальном масштабах, обеспечить наблюдение средне- и мелкомасштабных процессов в атмосфере. Наконец, третий ярус — метеорологические спутники на орбитах высотой до 36 тыс. км для непрерывного наблюдения динамических процессов в атмосфере Земли. Они дадут картину общей циркуляции атмосферы. Кроме того, такая трехъярусная метеосистема будет получать дополнительную информацию о “погоде” в космосе от космической службы Солнца и космоса. Суммируя всю эту информацию, ученые смогут точнее предсказывать ход событий в атмосфере, познать закономерности погодообразования, что позволит вплотную подойти к управлению погодой на нашей планете и создаст предпосылки для преобразования природы на Земле в нужном для человечества направлении.

Использование спутников в геодезии и навигации

Искусственные спутники  открыли новую эру в науке об измерении Земли — эру космической геодезии. Они внесли в геодезию новое качество — глобальность; благодаря большим размерам зоны видимости поверхности Земли со спутника значительно упростилось создание геодезической основы для больших территорий, так как существенно сократилось необходимое количество промежуточных этапов измерений. Так, если в классической геодезии среднее расстояние между определяемыми пунктами составляет 10—30 км, то в космической геодезии эти расстояния могут быть на два порядка больше (1—3 тыс. км). Тем самым упрощается передача геодезических данных через водные пространства. Между материком и островами, рифами, архипелагами геодезическая связь может быть установлена при прямой их видимости со спутника непосредственно через него, без каких-либо промежуточных этапов, что способствует более высокой точности построения геодезической сети.

Основным методом космической геодезии является одновременное наблюдение спутника с наземных пунктов. При этом измеряются самые разнообразные параметры относительно положения пунктов и спутников. Параметрами могут служить дальность, скорость изменения дальности (или радиальная скорость), угловая ориентация линии визирования пункт—спутник в какой-либо системе координат, скорость изменения углов и т. д. Измерительные средства располагаются на наземных пунктах. На спутнике же размещается аппаратура, обеспечивающая работу этих измерительных средств. Спутник — это вспомогательный маяк для проведения измерений относительно положения опорных пунктов, причем этот маяк может быть как пассивным, так и активным. В первом случае спутник, освещенный солнцем или имеющий специальную лампу-вспышку, фотографируется с наземных пунктов на фоне звездного неба.

Одновременность наблюдений спутника с нескольких пунктов обеспечивается специальным синхронизирующим устройством, которое по сигналам единого времени производит одновременное открывание и закрывание затворов фотокамер. Наличие на фотографии изображений звезд (в виде точек) и следа спутника в виде пунктирной линии позволяет путем графических измерений определить взаимное положение штрихов пунктирной линии, соответствующих положениям спутника, и ближайших к ним точек, соответствующих звездам. Это дает возможность, зная положение звезд по звездному каталогу, определить координаты штрихов спутника или, точнее, угловую ориентацию линий визирования наблюдательный пункт—спутник. Совокупность угловых координат линии визирования пункт—спутник позволяет определить взаимную угловую ориентацию геодезических пунктов. Ориентация всей сети на поверхности Земли требует знания координат хотя бы одного пункта, определяемых классическими методами, и дальности до другого или координат двух пунктов, называемых базисными. - Для преодоления неблагоприятных метеорологических условий при оптических наблюдениях спутника используются радиотехнические средства. В этом случае спутник является как бы активным маяком. Применяются различные принципы измерений: эффект Доплера, смещение фаз радиосигналов спутника, принимаемых в различных точках пункта, время распространения сигнала пункт—спутник—пункт и т. д.

Большие перспективы в измерительной технике космической геодезии имеют оптические квантовые генераторы (лазеры). Они позволяют измерять дальность и радиальную скорость со значительно более высокой точностью, чем с помощью радиотехнических средств. Таким образом, космическая геодезия позволит уточнить форму Земли — геоид, точно определить координаты любых пунктов на поверхности нашей планеты, создать топографические карты на любые районы земной поверхности и определить параметры поля тяготения Земли.

Все это даст возможность морскому флоту определять очертания материков и получать точные координаты островов, рифов, маяков и других морских объектов, авиации — определять координаты аэропортов, наземных ориентиров и станций наведения. Эти данные позволят выбирать наилучшие маршруты движения и обеспечат   надежность и безопасность работы морского и воздушного транспорта.

Как известно, для прокладки курса корабля или самолета в каждый момент времени необходимо точно знать их местоположение. Для этих целей служат различные навигационные системы, которые обеспечивают вождение по заданным маршрутам. С давних времен в навигации использовались естественные ориентиры или поля: небесные светила, магнитное поле Земли и др. В последнее время большое распространение получили радионавигационные системы, среди которых наиболее современными являются системы, использующие искусственные спутники Земли.

Спутники обеспечивают навигационной системе глобальность. Всепогодность навигации в этом случае достигается благодаря использованию радиосредств сверхвысокочастотного диапазона.

Навигация с использованием спутников основана на измерении параметров относительного положения и движения навигируемого объекта и спутника. Такими параметрами могут служить: расстояние (дальность), скорость изменения этого расстояния (радиальная скорость), угловая ориентация линии объект-спутник (линии визирования) в какой-либо системе координат, скорость изменения этих углов и др.

Координаты спутника в моменты навигационных определений могут сообщаться кораблям (или самолетам) при каждой навигации. Кроме того, на спутнике может устанавливаться запоминающее устройство, в которое закладываются данные о его прогнозируемом движении. Эта информация “сбрасывается” со спутника в процессе полета (периодически или по запросу с навигируемого объекта). Для упрощения процесса определения координат объекта может быть составлен каталог эфемерид (параметров орбит) навигационных спутников на несколько месяцев или лет вперед.

Большое влияние на прогнозирование движения спутника оказывают ошибки определения элементов орбиты, которые зависят прежде всего от точности работы наземных измерительных средств. Эти средства должны быть хорошо “привязаны” к геодезической системе координат. Если этого не будет, то может произойти “сдвиг” координатной системы навигационного спутника относительно геодезической. А это приведет к сдвигу в определении положения навигируемого объекта относительно геодезической системы, а следовательно, и к сдвигу относительно земных ориентиров, что может вызвать катастрофические последствия. Геодезические спутники позволяют с высокой точностью осуществить привязку координат измерительных пунктов к геодезической системе.

Для успешной работы навигационных спутников имеет значение правильный выбор параметров их орбит. Необходимо обеспечить достаточную частоту видимости спутника с навигируемых объектов. С этой точки зрения различные орбиты сильно отличаются друг от друга. Так, спутник, летящий по низкой полярной орбите “осматривает” всю Землю дважды в сутки, один раз на прямых, другой—на обратных витках. Точнее говоря, Земля относительно движущегося по орбите спутника перемещается так, что с любой ее точки он может быть виден 2 раза в сутки. Чтобы обеспечить непрерывный обзор поверхности Земли со спутников, запускаемых на полярные орбиты, т. е. для обеспечения видимости одного или более спутников с корабля или самолета, находящегося в любой точке нашей планеты, необходимо на орбитах высотой 200 км иметь 160 спутников, а высотой 1 тыс. км — 36 спутников.

Создание систем космической навигации позволяет значительно улучшить безопасность движения транспорта. Подобные системы прочно входят в практику корабле и самолетовождения, так как позволяют с высокой точностью определять местоположение кораблей и самолетов в любое время суток, при любом состоянии погоды.

Влияние космических исследований на развитие науки и производства

Создание сложнейших  ракетно-космических систем, возникновение космической индустрии и решение фундаментальных   проблем науки и техники, связанных с полетами в космос, дали массу идей, технических средств и принципиально новых конструктивно-технологических решений, внедрение которых в традиционное производство и использование в различных сферах деятельности человека даст колоссальные экономические выгоды. Опосредованные выгоды, которые приносит человечеству космонавтика, весьма трудно поддаются количественным оценкам. Тем не менее попытки таких расчетов делаются. Так, например, согласно подсчетам ряда зарубежных специалистов, прибыль, обусловленная научными исследованиями и разработками в области космоса, достигает 207 млрд. долл.

Благодаря развитию космонавтики физическая наука обогатилась фундаментальными открытиями в области астрофизики, космического излучения, изучения радиационных поясов Земли, солнечно-земной физики, рентгеновской астрономии и др. Потребности космической техники стимулировали исследования в области физики электронных и ионных пучков и направленных плазменных потоков. Применение низкотемпературных (криогенных) ракетных топлив, создание бортовых электрогенераторов сверхбольшой мощности, технически совершенных, привело к необходимости глубокого изучения физики низкотемпературных жидкостей, поведения их в условиях невесомости, разработки новых методов криостатирования легких надежных магнитных систем с малым энергопотреблением, стимулировало развитие физики сверхпроводимости и гелиевой криогеники.

Развитие космической энергетики позволило значительно усовершенствовать существующие источники тока. Так, например, топливные элементы, вырабатывающие электрический ток в результате электрохимических процессов, применяемые в космических кораблях, в будущем могут найти широчайшее использование в автомобилях, что позволит ликвидировать один из основных источников загрязнения атмосферы, каким является двигатель внутреннего сгорания. Топливные элементы, по-видимому, будут широко внедрены в промышленность и сельское хозяйство как удобный и эффективный источник электроэнергии. То же можно сказать о радиоизотопных и ядерных источниках тока. Наряду с этим усовершенствованные химические аккумуляторы (никель-кадмиевые, серебряно-кадмиевые, серебряно-цинковые) и солнечные батареи, широко использующиеся в космических системах, найдут применение в самых различных областях народного хозяйства.

Большое значение в современной технике имеет надежность механизмов и машин. Разработка сложных космических комплексов, эксплуатация которых проходит в исключительно трудных и малоизведанных условиях, стимулировала дальнейшее развитие теории надежности, теории проектирования (внедрение системных методов), методов испытаний и экспериментальной отработки и пр. В связи с тем что на космическую технику работают практически все отрасли народного хозяйства, проблемы повышения надежности охватывают и электронику, и измерительную технику, и машиностроение. Таким образом, космонавтика стимулирует повышение надежности в самых различных областях производства.

Велико значение ракетно-космической техники в развитии микроэлектроники и вычислительных машин. Острая потребность в малых размерах и незначительном энергопотреблении привела к разработке сверхминиатюрных, компактных и высоконадежных радиоэлектронных приборов и устройств, инициировала развитие транзисторной техники и интегральных схем, которые в последние годы широко употребляются в производстве радиоприемников, телевизоров, электронных часов и т. д. Внедрение совершенных электронных вычислительных машин в различные отрасли народного хозяйства привело к резкому увеличению производительности труда и удешевлению продукции, позволило высвободить большое количество времени для творческой деятельности человека.

Ракетно-космическая техника связана с разработкой и развертыванием промышленного производства самых разнообразных конструкционных материалов, которые находят в настоящее время применение в различных областях производства и строительства. Хорошо известно, как широко используется “крылатый” металл алюминий. Все больше начинает внедряться титан и его сплавы. Но, пожалуй, наибольшее значение имеет создание всевозможных неметаллических конструкционных материалов: армированных, комбинированных, слоистых, стойких и к высоким и к крайне низким температурам. Так, например, новый составной материал, состоящий из нитевидных кристаллов бора, склеенных специальной резиной, вдвое прочнее и в два с половиной раза тверже алюминия.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: