Xreferat.com » Рефераты по науке и технике » Лекции по статистике

Лекции по статистике

Введение.

Термин "статистика" ("status"в переводе с латинского означает государство) появился в 17 веке.

Первоначально статистика возникла как наука количественного описания происходящих в обществе процессов с использованием "меры, веса и числа". В современной жизни слово "статистика" имеет два основополагающих значения: во-первых, оно обозначает сами числа или данные. Под этим термином обычно понимают некоторую информацию об окружающем нас мире, не интересуясь способом ее получения, представляющую потенциальный интерес и упорядоченную определенным образом. Примерами данных являются результаты переписи населения, сведения о концентрации вредных веществ в воздушном бассейне города, соответствующие друг другу курсы валют и так далее.

Все возрастающее количество накапливаемых данных порождает проблемы возможного сокращения их количества без существенной потери полезной информации, потенциально в них заложенной. Поэтому, во-вторых, под статистикой понимают науку извлечения полезной информации из множества данных.

Существует несколько определений статистики - наука принятия разумных решений перед лицом неопределенности. Для принятия решения в отношении исследуемого объекта мы должны:

иметь о нем информацию, т.е. располагать определенным образом собранными и сгруппированными результатами наблюдения; иметь методы анализа и обработки статистических данных в зависимости от цели исследования.

Таким образом, статистика - наука о методах организации сбора, систематизации и обработки статистических данных с целью удобного из представления, правильной интерпретации и получения научных и практических выводов.

Статистика может быть представлена в виде двух составных частей:

описательной статистики, позволяющей с помощью специальных методов осуществить удобное представление данных для последующего анализа в виде частотных распределений, графических изображений и различных характеристик. математической (теории принятия статистических решений)

Зарождение описательной статистики отмечается уже в 2200 году до н. э. в. Китае. В дальнейшем, практическая статистика в административных и военных целях находит применение в Египте, Персии, Римской Империи, подтверждая свое название. Значительно позднее, на базе теории вероятностей, зародилась математическая статистика, благодаря трудам выдающихся математиков Я..Бернулли, П. Лапласа, К. Гаусса.

Общей чертой сведений, составляющих статистику служит то, что в каждом конкретном случае объектом статистического изучения является статистическая совокупность, состоящая из качественно однородных единиц, но отличающихся по каким-то другим признакам. Качественная однородность элементов совокупности определяется исходя из цели исследования. Генеральной совокупностью называются все изучаемые однородные объекты, выборка - специально организованная часть генеральной совокупности.

Задача получения необходимой информации решается с помощью двух взаимно дополняющих принципов: выборочного метода и свертки информации. Первый предусматривается отказ от генеральной совокупности в пользу выборки, второй - заменяет всю выборку несколькими числами (ее характеристиками). Статистические характеристики различают как для генеральной совокупности, так и для выборки. Необходимо сделать несколько замечаний по применению статистических методов:

результаты статистического анализа могу противоречить действительности, это происходит тогда, когда исследователь не понимает проблемы либо применяемых статистических методов. существует возможность умышленно вводить в заблуждение с помощью статистики. в последнее время специалисты стараются применят все более тонкие статистические методы. Такой практики следует избегать, так как цель анализа не показать знание сложных аналитических методов, а правильно решить задачу.

Статистические методы в современной жизни находят свое применение в самых разнообразных областях: в экономике (исследования рынка и производства, контроль качества продукции, подбор кадрового персонала, предсказания конъюнктуры рынка и т.д.), в управлении (аппарат которого нуждается в информации о народонаселении, совокупном общественном продукте, внешней торговле). Без применения стат. методов практически невозможно никакое социально-научное исследование. С появлением ЭВМ, статистика проникает и в медицину, биологию, психологию и другие науки.

В зависимости от учреждений, использующих статистические методы, различают официальную и неофициальную статистику. Под официальной статистикой понимают статистические исследования и меры по сбору информации, предпринимаемые в соответствии с правительственными распоряжениями. К неофициальной статистике относят исследования, проводимые в фирмах, институтах общественного мнения и на предприятиях.

Тема 1. Основные понятия описательной статистики.

Совокупность - множество элементов, обладающих некоторыми общими свойствами, существенными для их характеристики.

Единица совокупности - элемент совокупности, подлежащий наблюдению. Признак - свойство элементов совокупности. Самым важным различием признаков является их классификация на контролируемые (входные) и признаки отклика (выходные). Например, уровень финансовых вложений в производство является входным признаком, а продуктивность - выходным. Второй особенностью наблюдений является математический характер соответствующего признака, в частности, тип множества допустимых значений, который принимает признак в процессе наблюдения. В этом смысле признаки делятся на качественные и количественные. Качественные признаки это те признаки, которыми объект либо обладает, либо не обладает. К ним относятся: пол, цвет волос или национальность и т.д. Такие признаки не являются физически измеримыми, однако они могут быть двузначными или многозначными.

Количественные признаки являются измеримыми и определяются путем измерений, взвешиваний и подсчетов. В соответствии с этим различают дискретные и непрерывные количественные признаки. Дискретные признаки могут принимать лишь изолированные значения, отличающиеся друг от друга на некоторую конечную величину. Примером таких признаков является академическая система успеваемости: 5 - отлично, 4 - хорошо и т.д. Совокупность возможных значений, среди которых изменяется (варьируется) дискретный признак называется системой вариант. Отдельное значение системы называется вариантой.

Непрерывные признаки могут принимать любые значения на некотором числовом интервале, отличающиеся друг от друга на сколь угодно малую величину. К таким признакам относятся, например, возраст, рост и вес человека.

Множество допустимых значений признаков как качественного, так и количественного вида характеризуются типом шкалы в которой они изменяются. различают три основных типа шкал: номинальная или шкала наименований, порядковая и количественная, количественная в свою очередь подразделяется на интервальную, шкалу отношений и абсолютную шкалу.

В номинальной шкале все элементы совокупности классифицированы и классы обозначены номерами. То, что номер оного класса больше или меньше другого, еще не говорит о свойствах элементов, за исключением того, что они различаются. Номинальная шкала может быть категоризированной или нет. В категоризированной шкале исследователю заранее известны уровни, принимаемые признаком. Например, раса, цвет глаз, автомобильные номера, клинические диагнозы и т.д.

В порядковой шкале соответствующие значения чисел, которые присваиваются элементам совокупности, отражают количество анализируемого признака. Однако равные разности числе не означают равных разностей в количествах признака. Например, твердость минералов, награды за заслуги, военные ранги, уровень интеллекта и т.д.

В интервальной шкале существует единица измерения ( масштаб), при помощи которой объекты можно не только упорядочить, но и приписать им числа так. чтобы равные разности чисел, присвоенные объектам, отражали бы равные различия в количествах измеряемого признака. Нулевая точка интервальной шкалы выбирается произвольно и не указывает на отсутствие признака. Например, календарное врем, шкалы температур и т.д.

В шкале отношений, числа, присвоенные элементам совокупности, обладают всеми интервальными признаками, но помимо этого существует абсолютный нуль, который свидетельствует об отсутствии анализируемого признака. Отношение чисел, присвоенных элементам в процессе измерений. отражает количественное отношение наличия признака. Например, рост, вес, объем, урожайность.

Абсолютная шкала является безразмерной шкалой отношений.

Тема 2. Вариационные ряды. Пример 1.

Приведем оценки 45 студентов по курсу статистика в порядке сдачи экзамена:

5 3 3 4 2 4 4 3 5 4 4 5 5 4 4

3 3 3 2 5 5 4 4 4 3 4 3 4 5 4

4 4 4 3 3 4 3 4 3 2 3 2 3 3 3

При таком представлении информации трудно делать какие-либо выводы об успеваемости. Произведем группировку данным путем подсчета количества различных оценок.

оценки

2

3

4

5

количество

4

6

8

7

Как видим, вместо 45 чисел осталось 8, при этом повысилась информативность таблицы, более 50% студентов сдали предмет на хорошо и отлично. Данный пример показывает, что эти данные лучше сгруппировать, то есть разделить их на однородные группы по некоторому признаку. Благодаря группировке данные приобретают систематизированный вид. Если данные систематизированы по времени, то моделью группировки будет временный ряд. Если же по любому другому признаку - то ряд распределения. А для количественных признаков - вариационный ряд.

Пусть Х - одномерный количественный признак и в результате n его измерений наблюдалось n его значений x(1),x(2).....x(n), среди которых могут быть одинаковые. Эти значения называют вариантами. Пуст среди имеющихся n вариант имеется k различных Лекции по статистике.Причем x1 встречается m1 раз, xk - mk раз. Понятно, что Лекции по статистике.

Определение.

Вариационным рядом называется последовательность различных вариант. записанных в возрастающем порядке вместе с соответствующими частотами. Вариационный ряд обычно записывается в одном из видов: в таблице с частотами mi, через относительные частоты Wi=mi/n. В зависимости от типа признака различают дискретные и интервальные вариационные ряды. В зависимости от объема исходных данных и области допустимых значений одномерного количественного признак, частотные распределения также подразделяются на дискретные и интервальные. Если различных вариант очень много (более 10-15), то эти варианты группируют, выбирая определенное число интервалов группировки и получая таким образом интервальное частотное распределение. Алгоритм группировки массива данных Лекции по статистике состоит из следующих шагов:

находят минимальную и максимальную варианты

Лекции по статистике

весь диапазон значений признака [Xmin,Xmax] разбивают на к интервалов одинаковой длины Лекции по статистике

Число К обычно берется в пределах 10-15. Редки случаи, когда требуется более 25 и менее 8 группировок. Существуют формулы для определения "оптимального" значения К и построения таким образом оптимального распределения частот. Формула Старджеса Лекции по статистике. Для больших n эта формула дает оценку снизу для К.

находят граничные точки каждого из интервалов Лекции по статистике и т.д. подсчитываем число вариант Mi, попавших в интервал Лекции по статистике, причем варианты, попавшие на границы интервалов, относят только к одному из интервалов, результат заносят в таблицу Лекции по статистике Пример 2.

Приведем вариационный ряд почасовой оплаты 303 рабочих промышленности

Xi

2.49

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.6

2.61

Mi

1

4

1

1

0

3

2

0

3

2

1

8

1


2.62

3

2.72

9

2.82

11

2.92

6

3.02

2

3.12

0

3.22

1

3.32

1

2.63

0

2.73

3

2.83

3

2.93

2

3.03

0

3.13

0

3.23

0

3.33

0

2.64

5

2.74

10

2.84

4

2.94

4

3.04

3

3.14

2

3.24

0

3.34

2

2.65

7

2.75

11

2.85

7

2.95

8

3.05

4

3.15

4

3.25

3

3.35

2

2.66

3

2.76

4

2.86

5

2.96

5

3.06

2

3.16

2

3.26

1

3.36

0

2.67

2

2.77

2

2.87

3

2.97

2

3.07

0

3.17

0

3.27

0

3.37

1

2.68

3

2.78

9

2.88

8

2.98

3

3.08

2

3.18

2

3.28

0

   

2.69

2

2.79

5

2.89

4

2.99

1

3.09

0

3.19

1

3.29

0

   

2.70

14

2.8

22

2.90

16

3.0

9

3.10

7

3.20

4

3.30

4

   

2.71

4

2.81

3

2.91

3

3.01

1

3.11

0

3.21

0

3.31

0

   

Построим для данного ряда интервальное частотное распределение.

X min = 2,49 Xmax=3,37 Лекции по статистике

Для удобства вычислений возьмем К=10. и т.д.

Для наглядного представления дискретных частотных распределений могут применяться вертикальные линии. Каждый из примеров можно рассматривать либо как выборку, либо как генеральную совокупность. Обычно данные собирают и анализируют для практических результатов.

пример.

Абсолютное частотное распределение прибыли 100 крупных межнациональных компаний, базирующихся в США за 1988 г.

Класс компании, размер прибыли, млн.$

Число компаний в классе

 

-1500-0

3

|||

0-500

41

|||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |

500 - 1000

32

|||| |||| |||| |||| |||| |||| |||| ||||

1000 - 1500

9

|||| |||| |

1500 - 2000

6

|||| ||

2000 - 2500

6

|||| ||

2500 - 5500

3

|||

3. Графическое изображение статистических данных.

Обычно табличное распределение частот дополняют его графическим представлением. Схематически все множество графических представлений статистических данных разделяют на два класса: диаграммы и линейные изображения. К классу линейных графиков относятся полигон, кумулятивная кривая, кривая концентрации, огива.

Полигоном частот называют ломаную, отрезки которой соединяют точки

Лекции по статистике Иногда крайние точки соединяют с точками, имеющими нулевую ординату.

пример. (с оценками)

Лекции по статистике

Полигоном относительных частот называют ломаную, отрезки которой соединяют точки Лекции по статистике.

Замечание.

Если на ось абсцисс наносить возможные исходы событий, а на ось ординат - вероятности этих исходов, то ломаная линия, характеризующая изменение вероятностей различных исходов событий при испытаниях называется полигоном распределения вероятностей.

Кумулятивная кривая (кривая сумм) - ломаная, составленная по последовательно суммированным, т.е. накопленным частотам или относительным частотам. При построении кумулятивной кривой дискретного признака на ось абсцисс наносятся значения признака, а ординатами служат нарастающие итоги частот. Соединением вершин ординат прямыми линиями получают кумуляту. При построении кумуляты интервального признака, на ось абсцисс откладываются границы интервалов и верхним значениям присваивают накопленные частоты. Кумулятивную кривую называют полигоном накопленных частот.

Если на ось ординат нанести значение признака, а накопленные частоты - на ось абсцисс, то получим кривую, называемую огивой.

Кривой концентрации или кривой Лоренца называют кривую относительной концентрации суммарного значения признака. Пусть имеется вариационный ряд, отражающий, например, частотное распределение семей по их доходам, где Лекции по статистике число (процент) семей с доходом Лекции по статистике. Тогда общий доход

Лекции по статистике - суммарный доход.

Относительный накопленный доход Лекции по статистике

Построение кривой Лоренца осуществляется следующим образом: по оси абсцисс откладывают накопленные относительные частоты, а по оси ординат накопленный относительный доход.

Лекции по статистике Если доход распределяется по семьям равномерно, то кривая Лоренца описывается прямой ОВ. Это означает, что 10% семей получают 10% общего дохода и т.д. абсолютная (полная) концентрация задается ломаной ОАВ. Это означает, что преобладающее число семей ( например 99%) совсем не имеют дохода и только 1%
Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: