Xreferat.com » Рефераты по науке и технике » Современная астрономия

Современная астрономия

Введение

Данный реферат посвящен современным вопросам астрономии - той области знаний, которые за последние годы дали наибольшее число научно-технических открытий.

Вся история изучения Вселенной есть, в сущности, поиск средств, улучшающих человеческое зрение. До начала XVII века невооруженный глаз был единственным оптическим инструментом астрономов. Вся астрономическая техника древних сводилась к созданию различных угломерных инструментов, как можно более точных и прочных. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Вселенная оказалась совсем иной, чем она казалась до тех пор. Постепенно были созданы приемники невидимых излучении и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра - от гамма-лучей до сверхдлинных радиоволн.

Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы - корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Если не бояться аллегорий, можно сказать, что Земля стала зорче, ее “глаза”, то есть совокупность всех приемников космических излучений, способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет.

Благодаря телескопам и другим инструментам астрономической техники человек за три с половиной века проник в такие космические дали, куда свет - самое быстрое, что есть в этом мире - может добраться лишь за миллиарды лет! Это означает, что радиус изучаемой человечеством Вселенной растет со скоростью, в огромное число раз превосходящей скорость света!

1. Спектральный анализ небесных тел

Могучим оружием о исследовании Вселенной стал для астрономов спектральный анализ - изучение интенсивности излучения в отдельных спектральных линиях, в отдельных участках спектра. Спектральный анализ является важнейшим средством для исследования вселенной. Спектральный анализ является методом, с помощью которого определяется химический состав небесных тел, их температура, размеры, строение, расстояние до них и скорость их движения. Спектральный анализ проводится с использованием приборов спектрографа и спектроскопа. С помощью спектрального анализа определили химический состав звёзд, комет, галактик и тел солнечной системы, т.к. в спектре каждая линия или их совокупность характерна для какого-нибудь элемента. По интенсивности спектра можно определить температуру звёзд и других тел.

По спектру звёзды относят к тому или иному спектральному классу. По спектральной диаграмме можно определить видимую звёздную величину звезды, а далее пользуясь формулами найти абсолютную звёздную величину, светимость, а значит и размер звезды.

Но в своем стремлении объяснить природу небесных тел астрономы не сдвинулись бы с места ни на шаг, если бы они не знали как возникают в мировых пространствах электромагнитные волны той или другой частоты. Сегодня уже известно несколько совсем различных механизмов генерирования электромагнитного излучения. Один из них связан с движением электронов в поле атомных ядер - это тепловой механизм Здесь интенсивность излучения определяется температурой части и их концентрацией в единице объема. Cинхротронное излучение возникает при торможении в магнитном поле релятивистских электронов, т.е. электронов, скорости движения которых близки к скорости света. Электромагнитные волны возникают и при затухании механических колебаний неоднородной плазмы (ионизованного газа), и при переходе быстрых частиц через границу двух сред.

Из сказанного следует, что недостаточно зарегистрировать излучение какого-то объекта в определенной длине волны. Необходимы исследования в широком диапазоне длин волн и все сторонний анализ полученных результатов. Сегодня астрономы, вооруженные современной ракетной техникой, мощными оптическими и радиотелескопами, сложной теорией механизмов излучения, ведут широкое изучение Вселенной в целом и ее отдельных частей. Астрономы убеждены в том, что они правильно понимают природу процессов, происходящих далеко за пределами наших земных лабораторий...

2. Небо в рентгеновских лучах

До недавнего времени (положение начало существенно меняться лишь немногим более тридцати лет назад) понятие “астрономические наблюдения” было тождественно понятию “оптические наблюдения неба”.

Между тем еще в последнем году XVIII в. В. Гершель открыл излучение Солнца, лежащее за пределами видимого спектра. Это было инфракрасное излучение, но его электромагнитная природа стала ясна много лет спустя.

В 1801 г. И.Риттер изучал воздействие фиолетового излучения Солнца на хлористое серебро и неожиданно обнаружил, что восстановление окиси серебра продолжается даже тогда, когда пластинка расположена в “темной” области, дальше за фиолетовой. Так было открыто ультрафиолетовое излучение Солнца, природа которого тоже оставалась неясной.

Лишь в шестидесятых годах XIX в. Д. Максвелл пришел к выводу, что кроме видимого электромагнитного излучения (обычного видимого света) могут существовать и другие его виды, не видимые глазу и отличающиеся лишь длиной волны.

Условно электромагнитное излучение подразделяют на несколько диапазонов. Наибольшей длиной (более 10-3 м) обладают радиоволны. Диапазон от 0,65 мкм до 1 мм - область инфракрасного излучения. “Оптическое окно” - от 0,39 до 0,65 мкм. Еще короче длины волн ультрафиолетового излучения, они простираются примерно до 0,05 мкм. В области еще более коротких длин волн приборы способны регистрировать буквально каждый фотон, и поэтому принято в рентгеновском и более жестких диапазонах (т. е. в области более высоких энергий фотонов) использовать не длины волн, а соответствующие им энергии фотонов. Так, фотон с длиной полны 0,05 мкм обладает энергией 4· 10-17 джоулей (Дж) или 0,025 килоэлектронвольт (кэВ). Область энергий фотонов от 0,025 до 1 кэВ - это область мягкого рентгеновского излучения, 1-20 кэВ - “классический” рентгеновский диапазон; именно в этом диапазоне были проведены наиболее эффективные исследования неба.

Какое это было бы прекрасное зрелище, если бы мы могли увидеть своими глазами небо в рентгеновских лучах! Пусть даже мы могли бы видеть лишь звезды ярче 6-й звездной величины, как и в оптическом диапазоне. На рентгеновском небе, в отличие от оптического, таких звезд поменьше - около 700 против 6000. Самая яркая рентгеновская звезда светит подобно Венере. Но, в отличие от Венеры, которая блестит спокойно, мы видели бы, как ярчайшая звезда на рентгеновском небе за считанные минуты становится ярче или уменьшает свой блеск. Мы видели бы игру яркости у многих рентгеновских звезд. Мы видели бы, как на небе вспыхивают и гаснут звезды - одни за секунду, другие за минуты, третьи за часы. Иные звезды видны всегда, другие - лишь несколько недель или месяцев. Мы видели бы звезду, которая вспыхивает и гаснет тысячи раз в сутки. Мы видели бы яркие туманности и огромные дуги излучения - ничего похожего нет на оптическом небосклоне. Правда, на рентгеновском небе нет яркой туманной полосы Млечного Пути -небо почти равномерно светится во всех своих частях. Мы видели бы множество слабых звезд, разбросанных по небу, и знали бы, что это очень далекие объекты - на оптическом небе невооруженный взгляд не способен их увидеть.

Рентгеновские звезды собираются в созвездия, которым никто не дал и, видимо, так и не даст на званий - поэтические времена в астрономии давно прошли. Астрономы - люди трезвые, предпочитающие точное знание поэтическим обобщениям.

Исследование рентгеновского неба принесло для нашего точного знания о Вселенной огромный материал. Особенно о тех небесных телах, которые существенно (а то и принципиально!) отличаются от обычных звезд, сияющих на оптическом ночном небе, Вероятно, в конце концов и без рентгеновских наблюдений астрономы обратили бы внимание на странные звезды Н2 Геркулеса, или НDЕ 226808, или Х Персея. Но знания наши остались бы при этом чрезвычайно неполными. Мы могли бы подозревать, что в этих системах есть нечто необычное - например, аномально большая невидимая масса. Но что происходит в окрестности этой массы? Может быть, это обычная звезда, просто ее излучение слабое и теряется на фоне первой компоненты? Вряд ли нам удалось бы узнать это. И уже совсем мы не могли бы ничего сказать о том, что происходит в центре нашей Галактики - области, не видимой в оптических лучах.

Впрочем, радиоастрономы могут сказать то же о радионебе. И в гамма-области небо тоже своеобразно и добавляет к нашим знаниям о Вселенном свою страницу.

Вселенная едина - это люди разделили излучение небесных тел на искусственные диапазоны, потому что неспособны воспринимать мир сразу во всем богатстве красок, от мягкой “акварели” радионебом до жгучих цветов гамма-лучей. Мы складываем картину Вселенной подобно мозаике, и данные рентгеновских наблюдений - лишь один из элементов. Изучение небесных тел и явлений сейчас приносит наибольшие плоды, когда все диапазоны электромагнитного спектра оказываются использованными. Всеволновая астрономия стала совершенно необходима, и она появилась.

Открытие, сделанное в каком-то одном диапазоне, сразу приводит к активизации исследований в других диапазонах. Шаровые звездные скопления изучались много лет, и неожиданностей здесь не предвиделось. Но вот были открыты в них рентгеновские источники, и шаровые скопления сразу привлекли всеобщее внимание. Резкий скачок исследований, резкий скачок в нашем понимании природы этих образований. Много лет исследовались двойные системы - кривые блеска, перетекание вещества, свойства звезд. Но вот в двойных системах были открыты рентгеновские источники, и астрофизики поняли, что знания, казавшиеся такими значительным, на самом деле малы. Последовал резкий рост числа исследований двойных систем - не только в рентгеновском, но в оптическом, инфракрасном, радиодиапазонах. Фронт науки не терпит отставания - если в одной области происходит прорыв вперед, на новые рубежи, все остальные должны не медленно подтянуться, иначе картина мира окажется клочковатой или просто противоречивой. В последние годы именно рентгеновские исследования часто были бросками в неизвестное, именно они “тянули” за собой фронт астрофизической науки.

Первое знакомство с рентгеновским небом за кончилось - так Галилей, оглядев небо в первый телескоп, понял, что перед ним новый мир, и, оправившись от потрясений, приступил к его систематическому изучению. Изучению, которое привело к современной оптической астрономии. То же пред стоит теперь и в астрономии рентгеновской.

И недалеко время, когда астрономы перестанут делить излучение на диапазоны, когда небо откроется сразу всеми цветами. Небо в рентгеновских лучах прекрасно - но мы увидим Небо и поразимся, и застынем на некоторое время, впитывая увиденное.. А потом - за работу.

3. Радиоастрономия

Зарождение радиоастрономии

Декабрь 1931 года... В одной из американских лабораторий ее сотрудник Карл Янский изучает атмосферные помехи радиоприему. Нормальный ход радиопередачи на волне 14,7 м нарушен шумами, интенсивность которых не остается постоянной.

Постепенно выясняется загадочная периодичность - каждые 23 часа 56 минут помехи становятся особенно сильными. И так изо дня в день, из месяца в месяц.

Впрочем, загадка быстро находит свое решение. Странный период в точности равен продолжительности звездных суток в единицах солнечного времени. Яснее говоря, через каждые 23 часа 56 минут по обычным часам, отсчитывающим солнечное время, земной шар совершает полный оборот вокруг оси, и все звезды снова возвращаются в первоначальное положение относительно горизонта любого пункта Земли.

Отсюда Янский делает естественный вывод: досадные помехи имеют космическое происхождение. Какая-то таинственная космическая “радиостанция” раз в сутки занимает такое положение на небе, что ее радиопередача достигает наибольшей интенсивности.

Янский пытается отыскать объект, вызывающий радиопомехи И, несмотря на несовершенство приемной радиоаппаратуры, виновник найден. Радиоволны исходят из созвездия Стрельца, того самого, в направлении которого находится ядро нашей звездной системы - Галактики.

Так родилась радиоастрономия - одна из наиболее увлекательных отраслей современной астрономии.

Развитие радиоастрономии

Первые пятнадцать лет радиоастрономия почти не развивалась. Многим было еще не ясно, принесут ли радиометоды какую-нибудь существенную пользу астрономии.

Разразившаяся вторая мировая война привела к стремительному росту радиотехники. Радиолокаторы были приняты на вооружение всех армий. Их совершенствовали, всячески стремились повысить чувствительность, вовсе не предполагая, конечно, использовать радиолокаторы для исследования небесных тел.

Советские ученые академики Л.И. Мандельштам и Н.Д. Папалекси теоретически обосновали возможность радиолокации Луны еще в 1943 году.

Это было первое радиоастрономическое исследование в Советском Союзе. Два года спустя (в 1946 году) оно было проверено на практике сначала в США, а затем в Венгрии. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю, где были уловлены чувствительным радиоприемником.

Последующие десятилетия - это период необыкновенно быстрого прогресса радиоастрономии. Его можно назвать триумфальным, так как ежегодно радиоволны приносят из космоса удивительные сведения о природе небесных тел. На сравнительно коротком интервале времени, начиная с 50-х гг., в радиоастрономии достигнут большой прогресс. Разрешение от 1-10 уг. мин. дошло до 0.1 тыс .уг. сек и значительно превосходит возможности оптической астрономии. Чувствительность от 1-10 Ян повысилась до 1 мкЯн. Наблюдения проводятся в диапазоне от 0.01 до 300-400 ГГц. Одновременно принимаемая полоса частот от 100-200 кГц доведена до 1-10 ГГц. Радиоастрономия имеет сопоставимые, а по некоторым проблемам и большие по сравнению с оптикой, возможности проникновения в глубины Вселенной.

Перспективы радиоастрономических исследований

Прогресс радиоастрономических исследований определяется уровнем экспериментальной техники. Можно указать на два достижения, которые являются основой современной радиоастрономии.

Первое: разработка апертурного синтеза и синтезированных радиотелескопов, разработка радиоинтерферометров со сверхбольшой базой. Смысл этих систем состоит в том, что сигналы, принятые разными антеннами, определенным образом складываются. В итоге удается воссоздать картину, которую дала бы одна большая остронаправленная антенна. И вот результат - в радиоастрономии получена разрешающая сила в десятитысячной доли угловой секунды, что на несколько порядков выше разрешения наземных оптических телескопов.

Второе: разработка на основе ЭВМ многоканальных систем космической радиоспектроскопии, создание радиотелескопов-спектрометров. Эти инструменты позволили исследовать структуру мазерных источников, открыть в космосе более 50 различных органических молекул, в том числе сложные молекулы, состоящие более чем из десятка атомов.

Через 50 лет, надо полагать, будут открыты (если они имеются) планеты у ближайших к нам 5-10 звезд. Скорее всего их обнаружат в оптическом, инфракрасном и субмиллиметровом диапазонах волн с внеатмосферных установок.

В будущем появятся межзвездные корабли-зонды для полета к одной из ближайших звезд в пределах расстояний 5-10 световых лет, разумеется, к той, возле которой будут обнаружены планеты. Такой корабль будет двигаться со скоростью не более 0,1 скорости света с помощью термоядерного двигателя.

В радиоастрономии будут использоваться гигантские космические системы апертурного синтеза с размерами радиотелескопов более 100 метров и расстоянием между ними до нескольких сотен тысяч километров (сейчас наибольшее расстояние между радиотелескопами ограничено размерами Земли).

В первой трети XXI в. будет обсуждаться проблема ограничения производства термоядерной энергии, которая к тому времени станет доминирующей, предпримутся также серьезные шаги, чтобы использовать фоновую энергию, существующую на Земле всегда (энергию ветра, приливов, солнечную энергию и т.п.), утилизация которой не приводит к дополнительному нагреву планеты.

Вероятно, будут построены специальные большие радиотелескопы для наблюдения и поиска электромагнитных сигналов разумного (искусственного) происхождения во всем перспективном диапазоне волн, проведены наблюдения сигналов от значительной части звезд Галактики, получит дальнейшее развитие теория возникновения и эволюции внеземных цивилизаций.

Радиоастрономия использует сейчас самые чувствительные приемные устройства и самые большие антенные системы. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Радиоастрономия стала неотъемлемой частью современного естествознания. Перед человечеством раскрылся радиокосмос - картина Вселенной в радиоволнах.

Как известно, успехи в радиоастрономии главным образом определяются возможностями получить высокую чувствительность и разрешающую способность. Из оптической астрономии пришло разделение инструментов на два класса: рефлекторов и рефракторов. В середине 50-х годов велась активная дискуссия, какие системы лучше развивать в радиоастрономии, где короче и дешевле путь достижения высокого разрешения и чувствительности.

Каждая наука изучает определенные явления природы, используя свои методы и средства. Для радиоастрономии объектом изучения служит

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: