Xreferat.com » Рефераты по науке и технике » Методы теоретической популяционной генетики

Методы теоретической популяционной генетики

Общие модели эволюции. . Теория нейтральности М.Кимуры

1. Классическая популяционная генетика

В этой лекции мы рассмотрим модели, характеризующие общие свойства эволюции. Начнем с синтетической теории эволюции. Эта теория была развита в начале 20-го века. Она основана на учении Ч.Дарвина о естественном отборе и на представлениях Г.Менделя о генах - дискретных элементах передачи наследственных признаков. Большую роль в становлении синтетической теории эволюции сыграла маленькая плодовая мушка Drosophila. Именно эксперименты на этой мушке позволили примирить кажущиеся противоречия между Дарвиновским представлением о постепенном накоплении полезных изменений и наследовании этих изменений и дискретным характером Менделевской генетики. Эксперименты на дрозофиле показали, что мутационные изменения могут быть очень небольшими.

Математические модели синтетической теории эволюции были разработаны Р. Фишером, Дж. Холдейном и С. Райтом. В основном эта математическая теория классической популяционной генетики была завершена к началу 30-х годов.

Согласно синтетической теории эволюции, основным механизмом прогрессивной эволюции является отбор организмов, которые получают выгодные мутации.

2. Математические методы популяционной генетики

Математические модели популяционной генетики количественно характеризуют динамику распределения частот генов в эволюционирующей популяции [1-4,6,8]. Есть два основных типа моделей: 1) детерминистические модели и 2) стохастические модели.

Детерминистические модели предполагают, что численность популяции бесконечно велика, в этом случае флуктуациями в распределении частот генов можно пренебречь, и динамику популяции можно описать в терминах средних частот генов.

Стохастические модели описывают вероятностные процессы в популяциях конечной численности.

Здесь мы кратко охарактеризуем основные уравнения и математические методы популяционной генетики. Наше изложение будет основываться на рассмотрении наиболее характерных примеров. Уравнения моделей мы будем приводить в основном в демонстрационных целях – без вывода, с пояснением смысла этих уравнений; тем не менее, мы будем приводить ссылки на литературу, в которой сделаны соответствующие математические выводы.

2.1. Детерминистические модели

Рассмотрим популяцию диплоидных1) организмов, которые могут иметь несколько аллелей2) A1 , A2 ,..., AK в некотором локусе3). Мы предполагаем, что приспособленности организмов определяются в основном рассматриваемым локусом. Обозначая число организмов и приспособленность генной пары Ai Aj через nij и Wij , соответственно, мы можем определить частоты генотипа и гена Pij и Pi , а также средние приспособленности генов Wi в соответствии с выражениями [1,2,4]:

Pij = nij /n , Pi = S j Pij , и Wi =Pi-1 S j Wij Pij , (1)

где n – численность популяции, индекс i относится к классу организмов {Ai Aj} , j = 1,2,..., K , которые содержат ген Ai . Популяция предполагается панмиктической4) : при скрещивании новые комбинации генов выбираются случайным образом из всей популяции.

Для панмиктической популяции приближенно справедлив принцип Харди-Вайнберга [1]:

Pij =Pi Pj , i, j = 1,..., K. (2)

Уравнение (2) означает, что во время скрещивания генотипы формируются пропорционально частотам генов.

Эволюционная динамика популяции в терминах частот генов Pi может быть описана следующими дифференциальными уравнениями [1,2,4]:

dPi /dt = Wi Pi - Pi - S j uji Pi + S j uij Pj , i = 1,..., K, (3)

где t – время, = S ij Wij Pij – средняя приспособленность в популяции; uij – параметры, характеризующие интенсивности мутационных переходов Aj --> Ai , uii =0 (i, j = 1,..., K). Первое слагаемое в правой части уравнения (3) характеризует отбор организмов в соответствии с их приспособленностями, второе слагаемое учитывает условие S i Pi = 1, третье и четвертое слагаемые описывают мутационные переходы.

Отметим, что подобные уравнения используются в модели квазивидов [5], см Лекция 2

Пренебрегая мутациями, мы можем анализировать динамику генов в популяции посредством уравнений:

dPi /dt = Wi Pi - Pi , i = 1,..., K. (4)

Используя (1), (2), (4), можно получить (при условии, что величины Wij постоянны), что

скорость роста средней приспособленности пропорциональна дисперсии приспособленности V = S i Pi ( Wi - )2 [1,3]:

d/dt = 2 S i Pi ( Wi - )2. (5)

Таким образом, средняя приспособленность – неубывающая величина. В соответствии с (4), (5), величина L = Wmax - есть функция Ляпунова для рассматриваемой динамической системы (Wmax – локальный или глобальный максимум приспособленности, в окрестности которого рассматривается динамика популяции) [3]. Это означает, что величина L всегда уменьшается до тех пор, пока не будет достигнуто равновесное состояние (dPi /dt = 0).

Уравнение (5) характеризует фундаментальную теорему естественного отбора (Р.Фишер,1930), которая в нашем случае может быть сформулирована следующим образом [3]:

"В достаточно большой панмиктической популяции, наследование в которой определяется одним n-аллельным геном, а давление отбора, задаваемое Wij , постоянно, средняя приспособленность популяции возрастает, достигая стационарного значения в одном из состояний генетического равновесия. Скорость изменения средней приспособленности пропорциональна аддитивной генной дисперсии и обращается в нуль при достижении генетического равновесия."

Описанная модель – простой пример модели, использующей детерминистический подход. В рамках этого подхода был разработан широкий спектр аналогичных моделей, которые описывают различные особенности динамики генных распределений, например, учитывают несколько генных локусов, возраст особей, число мужских и женских особей, пространственную миграцию особей, подразделение популяции на субпопуляции и т.п. Многие из моделей и расчетов были предназначены для интерпретации конкретных генетических экспериментальных данных [1,3,4] .

2.2. Стохастические модели

Детерминистические модели позволяют эффективно описывать динамику распределения генов в эволюционирующих популяциях. Однако эти модели основаны на предположении бесконечного размера популяции, которое является слишком сильным для многих реальных случаев. Чтобы преодолеть это ограничение, были разработаны вероятностные методы теоретической популяционной генетики [1,3,4,6-8]. Эти методы включают анализ с помощью цепей Маркова (в частности, метод производящих функций) [4,7], и диффузионные [1,3,4,6,8] методы.

Ниже мы кратко рассмотрим основные уравнения и характерные примеры применения диффузионного метода. Этот метод достаточно нетривиален и его применение приводит к достаточно содержательным результатам.

2.2.1. Прямое и обратное уравнения Колмогорова

Рассмотрим популяцию диплоидных организмов с двумя аллелями A1 и A2 в некотором локусе. Численность популяции n предполагается конечной, но достаточно большой, так что частоты гена могут быть описаны непрерывными величинами. Мы также предполагаем, что численность популяции n постоянна.

Введем функцию j = j (X,t|P,0) , которая характеризует плотность вероятности того, что частота гена A1 равна X в момент времени t при условии, что начальная частота (в момент t = 0) была равна P. В предположении малого изменения частот генов за одно поколение, динамика популяции может быть описана приближенно следующими дифференциальными уравнениями в частных производных [1,3,4,8]:

¶ j /¶ t = - ¶ (Md X j )/¶ X + (1/2)¶ 2(VdX j )/¶ X 2 , (6)

¶ j/¶ t = Md P ¶ j /¶ P + (1/2)Vd P ¶ 2j/¶ P 2 , (7)

где Md X , Md P и VdX , Vd P – средние значения и дисперсии изменения частот X, P за одно поколение, соответственно; единица времени равна длительности одного поколения. Уравнение (6) есть прямое уравнение Колмогорова. (В физике это уравнение называют уравнением Фоккера-Планка), уравнение (7) – обратное уравнение Колмогорова.

Первые слагаемые справа в уравнениях (6), (7) описывают давление отбора, которое обусловлено разностью приспособленностей генов A1 и A2. Вторые слагаемые характеризуют случайный дрейф частот, который обусловлен флуктуациями в популяции конечной численности.

Используя уравнение (6), можно определять динамику частот генов во времени. Уравнение (7) позволяет оценивать вероятности фиксации генов.

Предполагая, что 1) приспособленности генов A1 и A2 равны 1 и 1 - s , соответственно и 2) вклады генов в приспособленности генных пар A1 A1, A1 A2 и A2 A2 аддитивны, можно получить, что величины Md X , Md P и VdX , Vd P определяются следующими выражениями [1,3,4,8]:

Md X = sX(1-X), Md P = sP(1-P), Vd X = X(1-X)/(2n), Vd P = P(1-P)/(2n) . (8)

2.2.2. Случай чисто нейтральной эволюции

Если эволюция чисто нейтральная (s = 0), то уравнение (6) принимает вид:

¶ j/¶ t = (1/4n)¶ 2[X(1-X)j]/¶ X 2 . (9)

Это уравнение было решено аналитически М. Кимурой [1,6]. Само решение имеет сложный вид, основные результаты этого решения сводятся к следующему: 1) в конечной популяции фиксируется только один ген (A1 либо A2); 2) типичное время перехода от начального распределения к конечному составляет величину порядка 2n поколений. Отметим, что этот результат согласуется с оценками лекции 4 , где была рассмотрена несколько иная модель "чисто нейтральной" эволюции.

2.2.3. Вероятность фиксации гена

Используя уравнение (7), мы можем оценить вероятность фиксации гена A1 в конечной популяции. Действительно, рассматривая асимптотику при времени, стремящемся к бесконечности ( t --> inf ), мы можем положить ¶ j /¶ t = 0 и X = 1 ; тогда аппроксимируя вероятность u(P) , которую нужно найти, величиной u(P) = j (1, inf |P,0)/(2n) (здесь u(P) = j(1, inf |P,0)DX , где DX = 1/2n – минимальный шаг изменения частоты в популяции, см. также [3] для более строгого рассмотрения) и комбинируя (7), (8), мы получаем:

s du /dP + (1/4n) d 2u /dP 2 = 0 . (10)

Решая это простое уравнение при естественных граничных условиях: u (1) = 1, u (0) = 0 , мы получим вероятность фиксации гена A1 в конечной популяции [1,3,6]:

u(P) = [1 - exp (- 4nsP)] [1 - exp (- 4ns)]-1 . (11)

Выражение (11) показывает, что если 4ns < < 1 , то имеет место нейтральная фиксация гена: u(P) » P , если 4ns > > 1, то отбирается предпочтительный ген A1 : u(P) » 1; размер популяции nc ~ (4s)-1 есть граничное значение, разделяющее области "нейтрального" и "селективного" отбора.

Итак, математические методы популяционной генетики описывают динамику частот генов в эволюционирующих популяциях. Детерминистические методы используются при описании динамики частот в среднем; стохастические методы учитывают флуктуации в популяциях конечной численности.

3. Молекулярная эволюция: теория нейтральности

Классическая теория популяционной генетики, содержательно основанная на синтетической концепции эволюции, интенсивно развивалась до 1960-х годов, до тех пор, пока не возникли трудности интерпретации экспериментальных данных молекулярной биологии. В лекции 1 я уже отмечал, в 1950-1960-х годах произошла революция в молекулярной биологии. Была определена структура ДНК, расшифрован генетический код, ученые установили общие принципы работы молекулярно-генетической системы живой клетки.

Интенсивные исследования молекулярной биологии привели к серьезным результатам, касающимся биологической эволюции: была оценена скорость аминокислотных замен в белках, а также получены оценки, характеризующие полиморфизм белков.

Анализируя экспериментальные данные, М.Кимура обнаружил, что когда он пытался объяснить эти эксперименты на основе селекции благоприятных мутаций путем Дарвиновского отбора, то возникли серьезные затруднения. В своей книге [6] Кимура подробно описывает идеи, послужившие основанием для изобретения теории нейтральности. Например, в некоторых своих оценках, основанных на Дарвинском отборе, он получил, что для объяснения экспериментальных данных нужно потребовать, чтобы каждая особь в процессе эволюции давала 22 000 потомков. И для того, чтобы проинтерпретировать данные по молекулярной эволюции белков, Кимура предложил теорию нейтральности [6,9].

Основное предположение этой теории состоит в следующем: на молекулярном уровне мутации (замены аминокислот или нуклеотидов) преимущественно нейтральны или слабо вредны (существенно вредные мутации также возможны, но они элиминируются из популяции селекцией). Это предположение согласуется с экспериментально наблюдаемой скоростью аминокислотных замен и с тем фактом, что скорость замен в менее важных частях белков значительно больше, чем для активных центров макромолекул.

Используя математические методы популяционной генетики, Кимура получил ряд следствий теории, которые находятся в довольно хорошем согласии с данными молекулярной генетики [6].

Математические модели теории нейтральности существенно стохастические, т.е. относительно малая численность популяции играет важную роль в фиксации нейтральных мутаций. См. примеры расчетов, приведенных выше.

Но если молекулярные замены преимущественно нейтральны, как возможна прогрессивная эволюция? Чтобы ответить на этот вопрос, Кимура использует концепцию дупликации генов, развитую С.Оно [10]. Согласно теории Кимуры, дупликация генных участков создает дополнительные, избыточные ДНК-последовательности, которые в свою очередь дрейфуют далее за счет случайных мутаций, предоставляя тем самым сырой материал, из которого могут возникать новые, биологически значимые гены (Рис.1).

Методы теоретической популяционной генетики

Рис. 1. Иллюстрация к механизму прогрессивной эволюции в теории нейтральности. Схема появления нового биологически значимого белка. Показаны участки ДНК ( Ii ) и кодируемые ими белки ( Ei ). a) ген I1 кодирует белок E1, b) дупликация гена I1, новый участок (справа) кодирует тот же белок E1, c) случайный дрейф правого участка, d) возникновение нового биологически значимого белка E2 кодируемого участком ДНК I2 .

Заключая наш сжатый обзор теории нейтральности, процитируем пять принципов этой теории [6]. Первые четыре из них – эмпирические, а пятый установлен теоретическим путем.

Скорость эволюции любого белка, выраженная через число аминокислотных замен на сайт в год, приблизительно постоянна и одинакова в разных филогенетических линиях, если только функция и третичная структура этого белка остаются в основном неизменными. Функционально менее важные молекулы и их части эволюционируют (накапливая мутационные замены) быстрее, чем более важные. Мутационные замены, приводящие к меньшим нарушениям структуры и функции молекулы (консервативные замены), в ходе эволюции происходят чаще тех, которые вызывают более существенное нарушение структуры и функции этой молекулы. Появлению нового в функциональном отношении гена всегда должна предшествовать дупликация гена. Селективная элиминация вредных мутаций и случайная фиксация селективно нейтральных или очень слабо вредных мутаций происходят в ходе эволюции гораздо чаще, чем положительный дарвиновский отбор благоприятных мутаций.

4. Другие модели, характеризующие общие закономерности эволюции

Теория нейтральности – одна из наиболее разработанных общих теорий эволюции. Однако есть ряд моделей и концепций, также характеризующих эволюцию на молекулярном уровне, которые в основном дополняют теорию нейтральности. Отметим наиболее известные из них.

В работах Д.С.Чернавского и Н.М.Чернавской [11,12] сделана оценка

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: