Xreferat.com » Рефераты по науке и технике » Усилитель генератора с емкостным выходом

Усилитель генератора с емкостным выходом

Министерство образования Российской Федерации.

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ        УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиоэлектроники и защиты информации (РЗИ)

УСИЛИТЕЛЬ ГЕНЕРАТОРА С ЕМКОСТНЫМ ВЫХОДОМ

Пояснительная записка к курсовому проекту  по дисциплине «Схемотехника АЭУ»

                                                                                   Студент гр. 148-3

_______Д.А. Дубовенко

                                                                     12.05.01

                                                                              Руководитель

                                                                                          Доцент кафедры РЗИ

                                                          ________             _______А. А. Титов

2001

Реферат

     Курсовая работа   35 с.,  15  рис., 1 табл., 4 источника.

     УСИЛИТЕЛЬ, ТРАНЗИСТОР, КАСКАД, ЧАСТОТНЫЕ ИСКАЖЕНИЯ, ПОЛОСА РАБОЧИХ ЧАСТОТ,  КОРРЕКТИРУЮЩАЯ ЦЕПЬ, КОЭФФИЦИЕНТ УСИЛЕНИЯ

     В данной курсовой работе рассчитывается широкополосный высокочастотный усилитель генератора с емкостным выходом, а также корректирующие и стабилизирующие цепи.

     Цель работы - приобретение навыков расчета номиналов элементов усилительного каскада, подробное изучение существующих корректирующих и стабилизирующих цепей, умения выбрать необходимые схемные решения на основе требований технического задания.

     В процессе работы были осуществлены инженерные решения (выбор транзисторов, схем коррекции и стабилизации), расчет номиналов схем.

     В результате работы получили принципиальную готовую схему усилительного устройства с известной топологией и номиналами элементов, готовую для практического применения.

     Полученные данные могут использоваться при создании реальных усилительных устройств.

     Курсовая работа выполнена в текстовом редакторе Microsoft Word 2000 и представлена на дискете 3,5” (в конверте на обороте обложки).    

    

Задание

 на курсовое проектирование по курсу «Аналоговые электронные устройства».

Тема проекта – Усилитель генератора с емкостным выходом.

Исходные данные для проектирования:

 диапазон  частот: 1МГц – 200МГц,

 допустимые частотные искажения: Мн=3 дБ  Мв=3 дБ,

 усиление: 15 дБ,

 источник входного сигнала: Rн=Усилитель генератора с емкостным выходом, Сг=15 пФ,

 выходная мощность: 2 Вт,

 нагрузка: 50 Ом,

 условия эксплуатации: +10 С - +60 С.

Содержание

1 Введение  ---------------------------------------------------------------------------------   5

2 Расчеты -----------------------------------------------------------------------------------   6

2.1  Определение числа каскадов-------------------------------------------------------   6

2.2 Распределение искажений  ---------------- -----------------------------------------  6

2.3 Расчет оконечного каскада ----------------------------------------------------------  6

2.3.1 Расчет рабочей точки, выбор транзистора -------------------------------------  6

2.3.2 Расчет эквивалентных схем ------------------------------------------------------  10

2.3.3 Расчет схем термостабилизации ------------------------------------------------  12

2.3.4 Расчет выходной корректирующей цепи --------------------------------------  16

2.3.5  Расчет межкаскадной корректирующей цепи -------------------------------  17

2.4 Расчет предоконечного каскада.---------------------------------------------------  20

2.4.1 Расчет схемы термостабилизации ----------------------------------------------  20

2.4.2 Расчет межкаскадной корректирующей цепи --------------------------------  22

2.5 Расчет входного каскада.------------------------------------------------------------  24

2.5.1 Расчет схемы термостабилизации входного каскада  ----------------------  25

2.5.2 Расчет входной корректирующей цепи ----------------------------------------  27

2.6 Расчет разделительных емкостей -------------------------------------------------- 29

3 Заключение  ------------------------------------------------------------------------------  31

Список использованных источников  -------------------------------------------------  32

РТФ КП. 468740.001.Э3 Усилитель генератора с емкостным выходом.

                                          Схема электрическая принципиальная ------------------33

РТФ КП.468740.001.ПЭЗ Усилитель генератора с емкостным выходом.

                                            Перечень элементов ----------------------------------------34

Введение.

     Основная цель работы - получение необходимых навыков практического расчета радиотехнического устройства (усилителя мощности), обобществление полученных теоретических навыков и формализация методов расчета отдельных компонентов электрических схем.

     Усилители электрических сигналов применяются во всех областях современной техники и народного хозяйства: в радиоприемных и радиопередающих устройствах, телевидении, системах звукового вещания, аппаратуре звукоусиления и звукозаписи, радиолокации, ЭВМ. Также они нашли широкое применение в автоматических и телемеханических устройствах, используемых на современных заводах. Как правило, усилители осуществляют усиление электрических колебаний, сохраняя их форму. Усиление происходит за счет электрической энергии источника питания. Т. о., усилительные элементы обладают управляющими свойствами.

    Устройство, рассматриваемое в данной работе, может широко применяться на практике. Примерами может служить телевизионный приемник, система индикации радиолокационной станции и другие устройства индикации.

     Устройство имеет немалое научное и техническое значение благодаря своей универсальности и широкой области применения.

 

     2. Расчеты

     2.1. Определение числа каскадов

     Число каскадов определяется исходя из технического задания. Данное устройство должно обеспечивать коэффициент усиления 15дБ, поэтому целесообразно использовать три каскада, отведя на каждый только по 5дБ, чтобы усилитель был стабильным. Также с тремя каскадами легче обеспечить запас усилению мощности.

     2.2. Распределение искажений амлитудно-частотной характеристики (АЧХ)

     Исходя из технического задания, устройство должно обеспечивать искажения не более 3дБ. Так как используется три каскада, то каждый может вносить не более 1дБ искажений в общую АЧХ. Эти требования накладывают ограничения на номиналы элементов, вносящих искажения.

     2.3. Расчет оконечного каскада

     2.3.1. Расчет рабочей точки (энергетический расчет)

     Рассмотрим две схемы реализации выходного каскада: резистивную и дроссельную. Выбор той или иной схемы осуществим на основе полученных данных расчета. Критерий выбора – оптимальные энергетические характеристики схемы. Также выберем транзистор, удовлетворяющий требованиям задания.

а) Резистивная схема

     Схема резистивного каскада приведена на рисунке 2.1 данного пункта. 

Усилитель генератора с емкостным выходом

Рисунок 2.1 – Схема оконечного каскада по переменному току.

     Обычно сопротивление в цепи коллектора принимают порядка Rн. Рассчитаем энергетические параметры. Напряжение на выходе усилителя рассчитывается по формуле:

                                                 ,                                                 (2.1)

 где P- мощность на выходе усилителя, Вт;

 Rн – сопротивление нагрузки, Ом.

     Тогда Усилитель генератора с емкостным выходом. Ток транзистора вычисляется по формуле (2.2).

                                           Усилитель генератора с емкостным выходом,                                                      (2.2)

где Rперем – сопротивление цепи коллектора по переменному току, Ом.

     Тогда Усилитель генератора с емкостным выходом.

Усилитель генератора с емкостным выходом     Теперь можно определить рабочую точку:

                                        Uкэ0=Uвых+Uостаточное =16.5В,                                      (2.3)

                                        Iк0=1.1*Iтр=0.62А.

     Напряжение Uкэ0 получено при условии, что величина напряжения Uостаточное, находящаяся в пределах от 2В до 4В, имеет значение 2.4В.

     Напряжение источника питания при этом:

                       Еип=Uкэ0+Rк*Iк0=16.5В+50*0.62В=47.5В.                           (2.4)

     Видно, что напряжение питания достаточно высокое.

     Нагрузочные прямые по постоянному и переменному току приведены на рисунке 2.2.

Усилитель генератора с емкостным выходомУсилитель генератора с емкостным выходом

Рисунок 2.2 – Нагрузочные прямые по постоянному и переменному току.

     Расчет прямой по постоянному току производится по формуле:

Еип=Uкэ0+Rк*Iк0.                                            (2.5)

       Iк0=0:      Uкэ0=Еип=47.5 В,

    Uкэ0=0:   Iк0= Еип/ Rк=47.5/50А=0.95А.

     Расчет прямой по переменному току производится по соотношениям:

Усилитель генератора с емкостным выходом,        ,  

Усилитель генератора с емкостным выходом,                  .

     б) Дроссельная схема

     Схема каскада приведена на рисунке 2.3 данного пункта. 

Усилитель генератора с емкостным выходом

Рисунок 2.3 – Схема оконечного некорректированного каскада.

     Рассчитаем энергетические параметры по известным формулам:

Усилитель генератора с емкостным выходом,

Усилитель генератора с емкостным выходом,

где Rн – сопротивление нагрузки по переменному току.

Усилитель генератора с емкостным выходом     Определим рабочую точку:

                        Uкэ0=Uвых+Uостаточное (2.4В)=16.5В

Iк0=1.1*Iтр=0.31А.

     Напряжение источника питания:

Еип=Uкэ0 =16.5В.

     Видно, что напряжение питания значительно уменьшилось. Нагрузочные прямые по постоянному и переменному току приведены на рисунке 2.4.

Усилитель генератора с емкостным выходом

Рисунок 2.4 – Нагрузочные прямые по постоянному и переменному току.

     Расчет прямой по постоянному току:

Еип=Uкэ0

     Расчет прямой по переменному току:

Усилитель генератора с емкостным выходом,        ,

 Усилитель генератора с емкостным выходом,          .

     Проведем сравнительный анализ двух схем.

Таблица 2.1 - Сравнительный анализ схем

Параметр Еип, В Ррасс, Вт Рпотр, Вт Iк0, мА Uкэ0, В
47.5 10.2 29.45 0.62 16.5
Дроссель 16.5 5.1 5.1 0.31 16.5

Мощности рассеивания и потребления рассчитывались по формулам:

                                                 ,                                               (2.6)

                                                                                                 (2.7).

Таблица наглядно показывает, что использовать дроссель в цепи коллектора намного выгоднее с энергетической точки зрения. Поэтому далее будем использовать именно эту схему.

     Выбор транзистора осуществляется исходя из технического задания, по которому можно определить предельные электрические и частотные параметры требуемого транзистора. Для данного задания они составляют (с учетом запаса 20%):

Iк доп  > 1.2*Iк0=0.372 А

              Uк доп > 1.2*Uкэ0=20 В                                        (2.8)

Рк доп > 1.2*Pрасс=6.2 Вт

Fт= (3-10)*fв=(3-10)*200 МГц.

     Этим требованиям с достаточным запасом отвечает транзистор 2Т 916А [1], сравнительные справочные данные которого приведены ниже:

 Iк=2 А – максимально допустимый постоянный ток коллектора,

Uкэ=55 В – максимальное постоянное напряжение коллектор-эмиттер,

Pк=20 Вт – выходная мощность при 1ГГц,

Fт= 1.4 ГГц – граничная частота коэффициента передачи тока базы,

Усилитель генератора с емкостным выходом, постоянная времени цепи обратной связи,             

Усилитель генератора с емкостным выходом, статический коэффициент передачи тока в схеме с общим эмиттером,                   

Усилитель генератора с емкостным выходом, емкость коллекторного перехода,

Усилитель генератора с емкостным выходом, коэффициент передачи тока в схеме с общей базой,

Усилитель генератора с емкостным выходом, емкость коллекторного перехода, при напряжении коллектор-эмиттер, равном 10 В,

   Lэ=0.35 нГн, индуктивность эмиттерного выхода,

   Lб=1 нГн, индуктивность базового вывода.

 2.3.2. Расчет эквивалентных схем транзистора 2Т 916А

     В данном пункте рассчитаем две эквивалентные схемы замещения транзистора: низкочастотную модель Джиаколетто [2] и высокочастотную однонаправленную модель [2]. Полученные эквивалентные параметры найдут применение в последующих расчетах.

    

а) Модель Джиаколетто

     Модель Джиаколетто представлена на рисунке 2.5.

Усилитель генератора с емкостным выходом

Рисунок 2.5 - Эквивалентная схема Джиаколетто.

     Для расчета используем справочные данные, выписанные выше [1]. Пересчитаем емкость коллекторного перехода на напряжение 10 В:

Усилитель генератора с емкостным выходом, емкость коллекторного перехода, рассчитанная при том же напряжении, что и постоянная времени цепи обратной связи.

     Элементы схемы рассчитываются по формулам [2]:

                            Усилитель генератора с емкостным выходом,                                           (2.9)                            

Усилитель генератора с емкостным выходом,

                  Усилитель генератора с емкостным выходом,                    (2.10)

                      Усилитель генератора с емкостным выходом,                             (2.11)

Усилитель генератора с емкостным выходом,

                          Усилитель генератора с емкостным выходом,                           (2.12)

                                                          ,                                            (2.13)

                                    Усилитель генератора с емкостным выходом,                                   (2.14)

Усилитель генератора с емкостным выходом.

        б) Однонаправленная модель

     Однонаправленная модель представлена на рисунке 2.6 данного пункта.

Усилитель генератора с емкостным выходом

Рисунок 2.6 - Однонаправленная модель.

Элементы модели рассчитываются на основе справочных данных по формулам [2]:

                             Усилитель генератора с емкостным выходом,                       (2.15)

                              Усилитель генератора с емкостным выходом.                                       (2.16)

     2.3.3 Расчет схем термостабилизации

     В этом пункте производится сравнение эффективности использования различных схем термостабилизации транзистора выходного каскада: эмиттерной и активной коллекторной. Схема термостабилизации поддерживает значение постоянного тока, текущего через транзистор, на определенном, неизменном уровне при изменении внешних факторов (температура). Схема эмиттерной термостабилизации приведена на рисунке 2.7.

Усилитель генератора с емкостным выходом

Рисунок 2.7 – Схема эмиттерной термостабилизации.

Усилитель генератора с емкостным выходом     Расчет номиналов элементов осуществляется по известной методике, исходя из заданной рабочей точки. На эмиттере должно падать напряжение не менее 3-5 В, чтобы стабилизация была эффективной. Рабочая точка:

Uкэ0= 16.5В,

Iк0=0.31А.

     Номинал резистора Rэ находится по закону Ома:

                                  Усилитель генератора с емкостным выходом.                                           (2.17)

     Емкость СЭ обеспечивает беспрепятственное прохождение высокочастотной составляющей эмиттерного тока. Рассчитывается по формуле:

                                         Усилитель генератора с емкостным выходом.                                                         (2.18)

     Тогда  Усилитель генератора с емкостным выходом.

     Мощность, рассеиваемая на резисторе RЭ:

                               Усилитель генератора с емкостным выходом.                                    (2.19)

     Видно, что рассеиваемая мощность значительна. Это является определенным недостатком, т.к. создает дополнительные сложности при практическом исполнении устройства.

     Энергетический расчет производится по формулам:

                                 Усилитель генератора с емкостным выходом.                              (2.20)

     Номиналы резисторов делителя рассчитываются по формулам:

                      Усилитель генератора с емкостным выходом.                     (2.21)

     Расчет  схемы эмиттерной термостабилизации закончен.

     Схема активной коллекторной термостабилизации усилительного каскада приведена на рисунке 2.8.

Усилитель генератора с емкостным выходом

Рисунок 2.8 – Схема активной коллекторной термостабилизации.

       В качестве управляемого активного сопротивления выбран маломощный транзистор КТ 316А со средним коэффициентом передачи тока базы 50. Напряжение на сопротивлении цепи коллектора по постоянному току должно быть больше 1 В, в данной схеме оно принято за 1.24 В.

     Энергетический расчет схемы производится по формулам [2]:

                         Усилитель генератора с емкостным выходом.                           (2.22)

Мощность, рассеиваемая на сопротивлении коллектора:

                             Усилитель генератора с емкостным выходом.                                  (2.23)

      Видно, что мощность рассеивания на отдельном резисторе уменьшилась почти в три раза по сравнению с предыдущей схемой.

Рассчитаем номиналы схемы [2]:

                           Усилитель генератора с емкостным выходом.                     (2.24)

     Номиналы реактивных элементов рассчитываются по формулам:

                                                                                                    (2.25)

     Этим требованиям удовлетворяют следующие номиналы:

Усилитель генератора с емкостным выходом

     Сравнивая две схемы видно, что более эффективно использовать активную коллекторную термостабилизацию, и с энергетической, и с практической точек зрения. Поэтому далее в принципиальной электрической схеме усилителя будет использоваться активная коллекторная схема термостабилизации.

      2.3.4. Расчет выходной корректирующей цепи

     Схема оконечного каскада

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: