Рабочие жидкости

1 . ТРЕБОВАНИЯ К РАБОЧИМ ЖИДКОСТЯМ .

Нормальная эксплуатация гидропривода возможна при использовании таких рабочих жидкостей ,которые одновременно могут выполнять различные функции.

В первую очередь рабочая жидкость в гидроприводе является рабочим телом, т.е. является носителем энергии, обеспечивающим передачу последней от источника энергии (двигателя) к её потребителю (исполнительным механизмам). Кроме того, рабочая жидкость выполняет роль смазки в парах трения гидропривода, являясь смазывающим и охлаждающим агентом, и средой, удаляющей продукты изнашивания. К функциям рабочей жидкости относится и защита деталей гидропривода от коррозии.

В связи с этим к рабочим жидкостям предъявляются разносторонние требования, в некоторой степени противоречивые и выполнение которых в полной мере не всегда возможно. К ним относятся:

- хорошие смазочные свойства;

- малое изменение вязкости при изменении температуры и давления;

- инертность в отношении конструкционных материалов деталей гидропривода;

-оптимальная вязкость, обеспечивающая минимальные энергетические потери и нормальное функционирование уплотнений;

- малая токсичность самой рабочей жидкости и её паров;

- малая склонность к вспениванию;

- антикоррозийные свойства; способность предохранять детали гидропривода от коррозии;

- оптимальная плотность;

- долговечность;

- оптимальная растворимость воды рабочей жидкостью: плохая для чистых минеральных масел ; хорошая для эмульсий и т.п.

- невоспламеняемость;

- малая способность поглощения или растворения воздуха;

- хорошая теплопроводность;

- малый коэффициент теплового расширения;

- способность хорошо очищаться от загрязнений;

- совместимость с другими марками рабочей жидкости;

- низкая цена;

Невыполнение этих условий приводит к различным нарушениям в функционировании гидропривода. В частности плохие смазочные или антикоррозийные свойства приводят к уменьшению сроков службы гидропривода; неоптимальная вязкость или её слишком большая зависимость от режимов работы гидропривода снижают общий к.п.д. и т.д.

Нормальная и долговременная работа гидропривода определяется в равной мере как правильностью выбора марки рабочей жидкости при конструировании,так и грамотной эксплуатацией гидропривода.

2 .СВОЙСТВА И ХАРАКТЕРИСТИКИ РАБОЧЕЙ ЖИДКОСТИ

2.1 ОБЩЕФИЗИЧЕСКИЕ СВОЙСТВА

Плотность рабочей жидкости - физическая величина, характеризующая отношение массы m жидкости к её объёму :

r = m / V.

Размерность плотности - кг / м3.

Величина плотности имеет большое значение для энергетических характеристик гидропривода. От неё зависит величина гидравлических потерь, определяемая, как

pпот=rC2/2 ,

где С - скорость движения жидкости.

Изменение плотности рабочей жидкости при изменении темпе-ратуры от t1 до t2 описывается выражением:

rt2 =r n1 / 1+b(t2-t1).

где b - коэфициент объемного расширения.

Относительное изменение объема жидкости при изменении температуры характеризуется температурным коэффициентом объёмного расширения b .

b= DV/ V Dt,

где V и DV - начальный объём и приращение объёма при повышении температуры на Dt. Размерность коэффициента b - 1/°c.

Изменение объёма DV и объём рабочей жидкости при изменении температуры с t1 до t2 может быть определено по формулам :

DV=b V (t2-t1),

Vt2= Vt1[1+b(t2-t1)].

Величина коэффициента объёмного расширения невелика. Однако , это изменение следует всё же учитывать при расчёте гидроприводов с замкнутой циркуляцией потока , чтобы избежать разрушений элементов гидропривода при нагреве.

Возможность разрушения деталей гидропривода обусловлена разницей в значениях температурного коэффициента объёмного расширения рабочей жидкости и металла деталей гидропривода. Повышение давления ,обусловленное нагревом , принято оценивать по формуле:

Dp = (b-bм)DtE / k

где bм - коэффициент объёмного расширения материала деталей гидропривода;

E - модуль упругости жидкости;

k- коэффициент , характеризующий объёмную упругость материала элементов гидропривода.

Грубая оценка повышения давления в замкнутом сосуде при нагреве на 10°C и принятых средних значениях b=8.75 10-4, bм=5.3 10-5, E=1.7 103 Мпа и k=1 дает величину около 15 Мпа. Поэтому в гидроприводе с замкнутой циркуляцией, эксплуатируемых при широком диапазоне изменения температуры рабочей жидкос- ти, должны быть установлены предохранительные клапаны или другие устройства , компенсирующие температурное увеличение объёма жидкости .

Сжимаемость жидкости - это её способность под действием внешнего давления изменять свой объём обратимым образом , т.е. так, что после прекращения действия внешнего давления восстанав- ливается первоначальный объём .

Сжимаемость жидкости характеризуется модулем упругости жидкости Е с размерностью Па ( или Мпа) .

Уменьшение объёма жидкости под действием давления определяется по формуле

DV=DV Dp / E .

При повышении давления модуль упругости увеличивается , а при нагреве жидкости - уменьшается .

Обычно в масле работающего гидропривода содержится до 6% нерастворённого воздуха. После отстаивания в течение суток содержание воздуха уменьшается до 0.01-0.02%. В этом случае рабочая жидкость представляет собой газожидкостную смесь , модуль упругости которой подсчитывается по формуле :

Егж = Е(Vж/Vp+1)/(V ж/Vp+E p0/p 2)

где Vж, Vp - объёмы соответственно жидкостной и газовой фаз при атмосферном давлении Р0.

В рабочей жидкости содержится также определённое количество растворённого воздуха (пропорциональное величине давления), который практически не влияет на физико-химические свойства масла, однако способствует возникновению кавитации , особенно во всасывающих линиях насосов, в дросселях и других местах гидропривода, где происходит резкое изменение давления.

2.2 ВЯЗКОСТЬ

Вязкость - свойство жидкости оказывать сопротивление сдвигу одного слоя относительно другого под действием касательной силы внутреннего трения. Напряжение трения согласно закону Ньютона пропорционально градиенту скорости dC/dy

t=hdC/dy.

Коэффициент пропорциональности h носит название динамиче-ской вязкости

h= t/dv/dy.

Единицей динамической вязкости является 1Па.с.(паскаль-секунда).

Более распространённым является другой показатель - кинематическая вязкость , которая учитывает зависимость сил внутреннего трения от инерции потока жидкости. Кинематическая вязкость ( или коэффициент динамической вязкости) определяется выражением

g=h/r.

Единицей кинематической вязкости является 1м2/c. Эта величина велика и неудобна для практических расчётов . Поэтому используют величину в 104 меньше -1 см2/c = 1Cт(стокс) , или 1 сотую часть Ст - сСт (сантистокс). В нормативно-технических документах обычно ука-зывают кинематическую вязкость при 100°С - (g100) или при 50 °С -(g50). Для новых марок масел в соответствии с международными нормами указывается вязкость при 40°С (точнее при 37.8°С) - g40. Указанная температура соответствует 1000 по Фаренгейту.

На практике используются и другие параметры , характеризующие вязкость жидкостей. Часто используют так называемую условную или относительную вязкость , определямую по течению жидкости через малое отверстие вискозиметра (прибора для определения вязкости) и сравнению времени истечения с временем истечения воды. В зависимости от количества испытуемой жидкости , диаметра отверстия и других условий испытаний применяют различные показатели. В России для измерения условий вязкости приняты условные градусы Энглера (°Е), которые представляют собой показания вискозиметра при 20, 50 и 100°С и обозначаются соответственно °E20; °E50 и °E100 . Значение вязкости в градусах Энглера есть отношение времени истечения через отверстие вяскозиметра 200 см3 испытуемой жидкости к времени истечения такого же количества дистиллированной воды при t=20 С..

Вязкость жидкости зависит от химического состава , от температуры и давления. Наиболее важным фактором , влияющим на вязкость , является температура. Зависимость вязкости от температуры различна для различных жидкостей. Для масел в диапазоне температур от t = +50 0C до температуры начала застывания применяется фор-мула :

nж= n50 exp (A / Tжa )

где nж - значение кинематической вязкости при температуре Tж ( ° K), в cCm;

A и a - эмпирические коэффициенты.

Для некоторых рабочих жидкостей значения коэффициентов А и а приведены в табл. 1.

Таблица 1.

  ВМГ3 АМГ-10 МГ-20 МГ-30
А* 10-8 10,98 10,82 40 94
а 3,06 3,06 3,77 3,91

Зависимость вязкости от температуры, или так называемые вязкостно-температурные свойства рабочих жидкостей, оцениваются с помощью индекса вязкости (ИВ) , являющегося паспортной характеристикой современных масел . Масла с высоким индексом вязкости меньше изменяют свою вязкость при изменении температуры. При небольшом индексе вязкости зависимость вязкости от температуры сильная. ИВ определяется сравнением данного масла с двумя эталонами. Один из этих эталонов характеризуется крутой вязкостно-температурной характеристикой , т. е. сильной зависимостью вязкости от температуры , а другой - пологой характеристикой. Эталону с крутой характеристикой присвоен ИВ=0 , а эталону с пологой характеристикой - ИВ = 100.

В соответствии с ГОСТ 25371-82 ИВ вычисляется по формуле :

ИВ =(n-n1) /(n-n2)

или ИВ=(n-n1) / n3

где n - кинематическая вязкость эталонного масла при t= 40 0C с ИВ=0 и имеющим при t=100 0С такую же кинематическую вязкость как и данное масло, сСm ;

n1 - кинематическая вязкость данного масла при t=40 0C , сСm ;

n2 - кинематическая вязкость эталонного масла при t=40 0C, с ИВ=100 и имеющим при t=100 0C такую же вязкость , что и данное масло, сСm ;

n3= n- n2 , cCm .

Реальные рабочие жидкости имеют значения ИВ от 70 до 120.

Вязкость рабочей жидкости увеличивается с повышением давления. Для практических расчетов может использоваться формула, связывающая динамическую вязкость с давлением:

hр=h0 ap

где h0 и hр - динамические вязкости при атмосферном давлении и давлении р .

а - постоянный коэффициент; в зависимости от марки масла а = 1,002 - 1,004.

При низких температурах масла застывают. Температурой застывания (ГОСТ 20287-74) называется температура , при которой масло загустевает настолько , что при наклоне пробирки с маслом на 450 его уровень в течение 1 мин. остается неподвижным. При температуре застывания работа гидропривода невозможна. Минимальная рабочая температура принимается на 10-150 выше температуры застывания.

Вязкость рабочей жидкости оказывает непосредственное влияние на рабочие процессы и явления , происходящие как в отдельных элементах, так и в целом гидроприводе. Действие вязкости неоднозначно и требуются тщательные исследования для рекомендации оптимальной вязкости для конкретного гидропривода. Изменение вязкости является критерием достижения предельного состояния рабочей жидкости.

При чрезмерно высокой вязкости силы трения в жидкости настолько значительны , что могут привести к нарушению сплошности потока. При этом происходит незаполнение рабочих камер насоса , возникает кавитация, снижается подача , ухудшаются показатели надежности.

Но помимо этого , высокая вязкость рабочей жидкости позволяет снизить утечки через зазоры , и щелевые уплотнения . При этом объёмный КПД увеличивается . Но высокая вязкость одновременно увеличивает и трение в трущихся парах и снижает механический КПД. Одновременно снижается и гидравлический КПД , так как возрастают гидравлические потери.

Рекомендуется выбирать рабочую жидкость таким образом , чтобы кинематическая вязкость при длительной эксплуатации в гидроприводе с шестеренными насосами находилась в пределах 18-1500 cCm , в гидроприводе с пластинчатыми насосами 10 - 4000 cCm и в гид рабочей жидкости связаны с прочностью мароприводе с аксиально-поршневыми насосами 6-2000 cCm.

Смазывающие способности рабочей жидкости связаны с образованием на трущихся поверхностях масляной пленки и способностью её противостоять разрыву. Обычно , чем больше вязкость , тем выше прочность масляной. плёнки при сдвиге. Рабочая жидкость в гидроприводе должна предотвращать контактирование и схватывание трущихся поверхностей при малых скоростях скольжения в условиях граничного режима трения. Другими словами , рабочая жидкость , должна , во-первых , обладать противозадирными свойствами , во-вторых уменьшать износ поверхностей трения , создавая гидродинамический режим смазки , т. е. обладать противоизностными свойствами.

Улучшение противозадирных и противоизностных свойств рабочей жидкости достигается введением их в состав присадок. Обычно вводят несколько присадок или комплексные присадки , улучшающие сразу несколько показателей рабочей жидкости

Стабильность свойств - это способность рабочей жидкости сохранять работоспособность в течение заданного времени при изменении первоначальных свойств в допустимых пределах.

Стабильность характеризуется антиокислительной способностью и однородностью рабочей жидкости , которые находятся между собой в зависимости. При длительной эксплуатации в результате реакции углеводородов масла с кислородом воздуха в рабочей жидкости появляются смолистые нерастворимые фракции , которые образуют осадки и плёнки на поверхностях деталей , обуславливая старение рабочей жидкости. В результате может быть нарушено нормальное функционирование таких прециционных элементов гидропривода, как распределители , дроссели и т. п. .

На скорость окисления существенно влияют температура масла , интенсивность его перемешивания , количество находящихся в рабочей жидкости воды и воздуха , а также металлических загрязнений. Значительное каталитическое воздействие на процесс старения оказывает присутствие медных деталей. Окисление рабочей жидкости характеризуется изменением кислотнго числа РН , которое определяется количеством миллиграммов едкого калия (КОН) , необходимого для нейтрализации свободных кислот в 1 г. жидкости. Кислотное число РН и количество осадка используется для оценки старения жидкости (ГОСТ 5985-79). Оно является одним из параметров, определяющих работоспособность рабочей жидкости. Чтобы повысить антиокислительные свойства рабочей жидкости , используются присадки.

2 Антикоррозийные свойства- характеризуют способность

рабочей жидкости выделять воздух или другие газы без образования пены. Эту способность определяют по времени исчезновения пены после подачи в жидкость воздуха или прекращения перемешивания. Способность противостоять пенообразованию усиливают добавлением антипенной присадки. Механизм действия присадки состоит в понижении поверхностного натяжения жидкости. Концентрируясь на поверхности пузырьков пены , присадка способствует их разрыву , а , следовательно быстрому гашению пены.

Стойкость рабочей жидкости к образованию эмульсии характеризуется способностью её расслаиваться и отделяться от попавшей в неё воды. Добавлением в жидкость деэмульгаторов( веществ, разрушающих масляные эмульсии) понижают поверхностное натяжение плёнки на границе раздела вода-масло и предотвращают смешивание рабочей жидкости с водой.

Совместимость рабочей жидкости с материалами гидропривода характеризуется отсутствием коррозии металлов , а также стабильность физико-химических свойств жидкости. Причины коррозийной активности рабочая жидкость тесно связаны с накоплением в них химических соединений , обуславливающих коррозию металлов.

Среди таких соединений основное влияние на коррозию оказывают перекиси, образующиеся в результате старения рабочей жидкости, и которые оцениваются кислотным числом pH.

Антикоррозийные свойства рабочей жидкости оценивают по испытаниям на коррозию металлических (из стали 50 и меди М2) пластин , помещенных на 3 часа в жидкость, нагретую до 1000С. Отсутствие потемнений на металлических пластинах является положительным результатом проверки.

Совместимость с резинотехническими изделиями гидропривода оценивают величиной набухания резины марки УИМ-1 или потери ее массы в рабочей жидкости

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: