Соли

, класс химических соединений. Общепринятого определения понятия “Соли”, так же как и терминов “кислоты и основания”, продуктами взаимодействием которых соли являются, в настоящее время не существует. Соли могут рассматриваться как продукты замещения протонов водорода кислоты на ионы металлов, NH4+, СН3NН3+ и др. катионы или групп ОН основания на анионы кислот (напр., Cl-, SO42-).

Классификация

Продуктами полного замещения являются средние соли, например. Na2SO4, MgCl2, неполного-кислые или основные соли, например KHSO4, СuСlOН. Различают также простые соли, включающие один вид катионов и один вид анионов (например, NaCl), двойные соли содержащие два вида катионов (например, KAl(SO4)2 •12H2O), смешанные соли, в составе которых два вида кислотных остатков (например, AgClBr). Комплексные соли содержат комплексные ионы, например K4[Fe(CN)6].

Физические свойства

Типичные соли - кристаллические вещества с ионной структурой, например CsF Существуют также ковалентные соли, например АlСl3. В действительности характер химической связи ,v многих солей смешанный.

По растворимости в воде различают растворимые, мало растворимые и практически нерастворимые соли. К растворимым относятся почти все соли натрия, калия и аммония, многие нитраты, ацетаты и хлориды, за исключением солей поливалентных металлов, гидролизующихся в воде, многие кислые соли.

Растворимость солей в воде при комнатной температуре

Кати-

оны

Анионы
F- Cl- Br- I- S2- NO3- CO32- SiO32- SO42- PO43-
Na+ Р Р Р Р Р Р Р Р Р Р
K+ Р Р Р Р Р Р Р Р Р Р
NH4+ Р Р Р Р Р Р Р Р Р Р
Mg2+ РК Р Р Р М Р Н РК Р РК
Ca2+ НК Р Р Р М Р Н РК М РК
Sr2+ НК Р Р Р Р Р Н РК РК РК
Ba2+ РК Р Р Р Р Р Н РК НК РК
Sn2+ Р Р Р М РК Р Н Н Р Н
Pb2+ Н М М М РК Р Н Н Н Н
Al3+ М Р Р Р Г Р Г НК Р РК
Cr3+ Р Р Р Р Г Р Г Н Р РК
Mn2+ Р Р Р Р Н Р Н Н Р Н
Fe2+ М Р Р Р Н Р Н Н Р Н
Fe3+ Р Р Р - - Р Г Н Р РК
Co2+ М Р Р Р Н Р Н Н Р Н
Ni2+ М Р Р Р РК Р Н Н Р Н
Cu2+ М Р Р - Н Р Г Н Р Н
Zn2+ М Р Р Р РК Р Н Н Р Н
Cd2+ Р Р Р Р РК Р Н Н Р Н
Hg2+ Р Р М НК НК Р Н Н Р Н
Hg22+ Р НК НК НК РК Р Н Н М Н
Ag+ Р НК НК НК НК Р Н Н М Н

Условные обозначения:

Р — вещество хорошо растворимо в воде; М — малорастворимо; Н — практически нерастворимо в воде, но легко растворяется в слабых или разбавленных кислотах; РК - нерастворимо в воде и растворяется только в сильных неорганических кислотах; НК - нерастворимо ни в воде, ни в кислотах; Г - полностью гидролизуется при растворении и не существует в контакте с водой. Прочерк означает, что такое вещество вообще не существует.

В водных растворах соли полностью или частично диссоциируют на ионы. Соли слабых кислот и(или) слабых оснований подвергаются при этом гидролизу. Водные растворы солей содержат гидратированные ионы, ионные пары и более сложные химические формы, включающие продукты гидролиза и др. Ряд солей растворимы также в спиртах, ацетоне, амидах кислот и др. органических растворителях.

Из водных растворов соли могут кристаллизоваться в виде кристаллогидратов, из неводных - в виде кристаллосольватов, например СаВг2 • ЗС2Н5ОН.

Данные о различных процессах, протекающих в водносолевых системах, о растворимости солей при их совместном присутствии в зависимости от температуры, давления и концентрации, о составе твердых и жидких фаз могут быть получены при изучении диаграмм растворимости водно-солевых систем.

Общие способы синтеза солей.

1. Получение средних солей:

1) металла с неметаллом: 2Na + Cl2 = 2NaCl

2) металла с кислотой: Zn + 2HCl = ZnCl2 + H2

3) металла с раствором соли менее активного металла Fe + CuSO4 = FeSO4 + Cu

4) основного оксида с кислотным оксидом: MgO + CO2 = MgCO3

5) основного оксида с кислотой CuO + H2SO4= CuSO4 + H2O

6) основания с кислотным оксидом Ba(OH)2 + CO2 = BaCO3 + H2O

7) основания с кислотой: Ca(OH)2 + 2HCl = CaCl2 + 2H2O

8) соли с кислотой: MgCO3 + 2HCl = MgCl2 + H2O + CO2

BaCl2 + H2SO4 = BaSO4 + 2HCl

9) раствора основания с раствором соли: Ba(OH)2 + Na2SO4 = 2NaOH + BaSO4

10) растворов двух солей 3CaCl2 + 2Na3PO4 = Ca3(PO4)2 + 6NaCl

2. Получение кислых солей:

1. Взаимодействие кислоты с недостатком основания. KOH + H2SO4 = KHSO4 + H2O

2. Взаимодействие основания с избытком кислотного оксида

Ca(OH)2 + 2CO2 = Ca(HCO3)2

3. Взаимодействие средней соли с кислотой Ca3(PO4)2 + 4H3PO4 = 3Ca(H2PO4)2

3. Получение основных солей:

1. Гидролиз солей, образованных слабым основанием и сильной кислотой

ZnCl2 + H2O = [Zn(OH)]Cl + HCl

2. Добавление (по каплям) небольших количеств щелочей к растворам средних солей металлов AlCl3 + 2NaOH = [Al(OH)2]Cl + 2NaCl

3. Взаимодействие солей слабых кислот со средними солями

2MgCl2 + 2Na2CO3 + H2O = [Mg(OH)]2CO3 + CO2 + 4NaCl

4. Получение комплексных солей:

1. Реакции солей с лигандами: AgCl + 2NH3 = [Ag(NH3)2]Cl

FeCl3 + 6KCN] = K3[Fe(CN)6] + 3KCl

5. Получение двойных солей:

1. Совместная кристаллизация двух солей:

Cr2(SO4) 3 + K2SO4 + 24H2O = 2[KCr(SO4) 2 • 12H2O[

Химические свойства.

1. Химические свойства средних солей:

1. Термическое разложение. CaCO3 = CaO + CO2

2Cu(NO3)2 = 2CuO + 4NO2 + O2

NH4Cl = NH3 + HCl

2. Гидролиз. Al2S3 + 6H2O = 2Al(OH)3 + 3H2S

FeCl3 + H2O = Fe(OH)Cl2 + HCl

Na2S + H2O = NaHS +NaOH

3. Обменные реакции с кислотами, основаниями и другими солями.

AgNO3 + HCl = AgCl + HNO3

Fe(NO3)3 + 3NaOH = Fe(OH)3 + 3NaNO3

CaCl2 + Na2SiO3 = CaSiO3 + 2NaCl

AgCl + 2Na2S2O3 = Nа3[Ag(S2O3) 2] + NaCl

4. Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона. 2KMnO4 + 16HCl = 2MnCl2 + 2KCl + 5Cl2 + 8H2O

2. Химические свойства кислых солей:

Термическое разложение с образованием средней соли

Ca(HCO3)2 = CaCO3 + CO2 + H2O

Взаимодействие со щёлочью. Получение средней соли.

Ba(HCO3)2 + Ba(OH)2 = 2BaCO3 + 2H2O

3. Химические свойства основных солей:

Термическое разложение. [Cu(OH)]2CO3 = 2CuO + CO2  + H2O

Взаимодействие с кислотой: образование средней соли.

Sn(OH)Cl + HCl = SnCl2 + H2O

4. Химические свойства комплексных солей:

1. Разрушение комплексов за счёт образования малорастворимых соединений:

2[Cu(NH3)2]Cl + K2S = CuS + 2KCl + 4NH3

2. Обмен лигандами между внешней и внутренней сферами.

K2[CoCl4] + 6H2O = [Co(H2O)6]Cl2 + 2KCl

5. Химические свойства двойных солей:

Взаимодействие с растворами щелочей: KCr(SO4)2 + 3KOH = Cr(OH)3 + 2K2SO4

2. Восстановление: KCr(SO4)2 + 2H°(Zn, разб. H2SO4) = 2CrSO4 + H2SO4 + K2SO4

Сырьем для промышленного получения ряда солей-хлоридов, сульфатов, карбонатов, боратов Na, К, Са, Mg служат морская и океаническая вода, природные рассолы, образующиеся при ее испарении, и твердые залежи солей. Для группы минералов, образующих осадочные солевые месторождения (сульфатов и хлоридов Na, К и Mg), применяют условное название “природные соли”. Наиболее крупные месторождения калиевых солей находятся в России (Соликамск), Канаде и Германии, мощные залежи фосфатных руд - в Северной Африке, России и Казахстане, NaNO3 - в Чили.

Соли используют в пищевой, химической, металлургической, стекольной, кожевенной, текстильной промышленности, в сельском хозяйстве, медицине и т. д.

Основные виды солей

1. Бораты (оксобораты), соли борных кислот: метаборной НВО2, ортоборной Н3ВО3 и не выделенных в свободном состоянии полиборных. По числу атомов бора в молекуле делятся на моно-, ди, тетра-, гексабораты и т. д. Бораты называют также по образующим их кислотам и по числу молей В2О3, приходящемуся на 1 моль основного оксида. Так различные метабораты могут быть названы моноборатами, если содержат анион В(ОН)4 или цепочечный анион {ВО2}nn- диборатами - если содержат цепочечный сдвоенный анион { В2О3(OН)2}n2n- триборатами - если содержат кольцевой анион (В3О6)3-.

Структуры боратов включают борокислородные группировки - “блоки”, содержащие от 1 до б, а иногда и 9 атомов бора например:

Координационное число атомов бора 3 (борокислородные треугольные группировки) или 4 (тетраэдричные группировки). Борокислородные группировки - основа не только островных, но и более сложных структур - цепочечных, слоистых и каркасных полимеризованных. Последние образуются в результате отщепления воды в молекулах гидратированных боратах и возникновения мостиковых связей через атомы кислорода; процесс иногда сопровождается разрывом связи В—О внутри полианионов. Полианионы могут присоединять боковые группы - борокислородные тетраэдры или треугольники, их димеры или посторонние анионы.

Аммоний, щелочные, а также и другие металлы в степени окисления +1 образуют чаще всего гидратированные и безводные метабораты типа МВО2, тетрабораты М2B4O7, пентабораты МB5O8, а также декабораты М4B10O17 • nH2O. Щелочноземельные и другие металлы в степени окисления + 2 дают обычно гидратированные метабораты, трибораты М2B6O11 и гексабораты МB6O10. а также безводные мета-, орто- и тетрабораты. Для металлов в степени окисления + 3 характерны гидратированные и безводные ортобораты МВО3.

Бораты - бесцветные аморфные вещества или кристаллы (в основном с низко-симметричной структурой - моноклинной или ромбической). Для безводных боратов температуры плавления находятся в интервале от 500 до 2000 °С; наиболее высокоплавки метабораты щелочных и орто- и метабораты щелочноземельных металлов. Большинство боратов при охлаждении их расплавов легко образует стекла. Твердость гидратированных боратов по шкале Мооса 2-5, безводных-до 9.

Гидратированные монобораты теряют кристаллизационную воду до ~180°С, полибораты -при 300-500°С; отщепление воды за счет групп ОН, координированных вокруг атомов бора, происходит до ~750°С. При полном обезвоживании образуются аморфные веществава, которыерые при 500-800°C в большинстве случаев претерпевают “боратовую перегруппировку” -кристаллизацию, сопровождающуюся (для полиборатов) частичным разложением с выделением В2О3.

Бораты щелочных металлов, аммония и Т1(I) растворимы в воде (особенно мета- и пентабораты), в водных растворах гидролизуются (растворыры имеют щелочную реакцию). Большинство боратов легко разлагается кислотами, в некоторых случаях - при действии СО2; и SO2;. Бораты щелочно-земельных и тяжелых металлов взаимодействуют с растворами щелочей, карбонатов и гидрокарбонатов щелочных металлов. Безводные бораты химически более стойки, чем гидратированные. С некоторыми спиртами, в частности с глицерином, бораты образуют растворимые в воде комплексы. При действии сильных окислителей, в частности Н2О2, или при электрохимическом окислении бораты превращаются в пероксобораты.

Известно около 100 природных боратов, являющихся в основном солями Na, Mg, Ca, Fe.

Гидратированные бораты получают: нейтрализацией Н3ВО3 оксидами, гидроксидами или карбонатами металлов; обменными реакциями боратов щелочных металлов, чаще всего Na, с солями других металлов; реакцией взаимного превращения малорастворимых боратов с водными растворами боратов щелочных металов; гидротермальными процессами с использованием галогенидов щелочных металлов в качестве минерализующих добавок. Безводные бораты получают сплавлением или спеканием В2О3 с оксидами или карбонатами металлов или обезвоживанием гидратов; монокристаллы выращивают в растворах боратов в расплавленных оксидах, напр Вi2О3.

Бораты используют: для получения других соединений бора; как компоненты шихты при производстве стекол, глазурей, эмалей, керамики; для огнестойких покрытий и пропиток; как компоненты флюсов для рафинирования, сварки и пайки металле”; в качестве пигментов и наполнителей лакокрасочных материалов; как протравы при крашении, ингибиторы коррозии, компоненты электролитов, люминофоров и др. Наибольшее применение находят бура и кальция бораты.

2. Галогениды, химические соединения галогенов с др. элементами. К галогенидам обычно относят соединения, в которых атомы галогена имеют большую электроотрицательность, чем др. элемент. Галогенидов не образуют Не, Ne и Аг. К простым, или бинарным, галогенидам ЭХn (n - чаще всего целое число от 1 у моногалогенидов до 7 у IF7, и ReF7, но может 6ыть и дробным, например 7/6 у Bi6Cl7) относят, в частности, соли галогеноводородных кислот и межгалогенные соединения (напр., галогенфториды). Существуют также смешанные галогениды, полигалогениды, гидрогалогениды, оксогалогениды, оксигалогениды, гидроксогалогениды, тиогалогениды и комплексные галогениды. Степень окисления галогенов в галогенидах обычно равна —1.

По характеру связи элемент-галоген простые галогениды подразделяют на ионные и ковалентные. В действительности связи имеют смешанный характер с преобладанием вклада той или иной составляющей. Галогениды щелочных и щелочно-земельных металлов, а также многие моно- и дигалогениды др. металов - типичные соли, в которых преобладает ионный характер связи. Большинство из них относительно тугоплавки малолетучи, хорошо растворимы а воде; в водных растворах почти полностью диссоциируют на ионы. Свойствами солей обладают также тригалогениды редкоземельных элементов. Растворимость в воде ионных галогенидов, как правило, уменьшается от иодидов к фторидам. Хлориды, бромиды и иодиды Ag+, Сu+, Hg+ и Pb2+ плохо растворимы в

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: