Xreferat.com » Остальные рефераты » Методическое руководство по расчету машины постоянного тока (МПТ)

Методическое руководство по расчету машины постоянного тока (МПТ)

(9.5)

Рис.9. Удельная энергия постоянного магнита


Во и Но координаты точки соответствующие максимуму энергии постоянного магнита на кривой размагничивания.

Величина коэффициента формы кривой размагничивания постоянных магнитов 025 09.

При = 025 коэффициент а = 0 и гипербола вырождается в прямую

 (9.6)

Рис. 10. Аналитическое представление кривой размагничивания пос-

тоянного магнита

показанную на рис. 10 (кривая 1).

При = 1 коэффициент а = 1 и уравнение гиперболы принимает вид

В = Вr

т.е. имеем горизонтальную прямую касательную к кривой размагничивания.

При = 05 коэффициент а = 08 и гипербола становится близкой к окружности (кривая 3 на рис.10).

Коэффициент формы кривой размагничивания определяется материалом постоянного магнита и для бариевых магнитов = 0316

 0390 для метоллокерамики = 036 064 для сплавов ЮНДК = 05 09, для магнитов на основе редкоземельных элементов = 027 03.


9.2. Совместная работа постоянных магнитов

с внешней магнитной цепью


Простейшая магнитная цепь состоит из постоянного магнита двух воздушных зазоров и внешнего магнитопровода.

Магнитный поток создаваемый постоянным магнитом состоит из основного потока проходящего через воздушные зазоры и внешний магнитопровод и потока рассеяния замыкающегося по воздуху между полюсами магнита.

Эти потоки по отношению к магниту являются внешними и их сумма должна быть равной потоку постоянного магнита

ФМ = ФВН = Ф + Ф. (9.7)

Величина потока рассеяния принимается пропорциональной МДС магнита:

Ф = FM. (9.8)

Согласно закону полного тока для магнитной цепи справедливо соотношение

2 HM lM + 2 H + 2 HCT lCT = 0 (9.9)

где lM и lCT половина длины магнита внешнего магнитопровода.

В этом случае

FM = (F + FCT) или по модулю FM =F + FCT. (9.10)

Поскольку магнитный поток пропорционален магнитной индукции а напряжённость магнитного поля МДС то кривую размагничивания постоянного магнита можно изобразить в координатных осях (Ф F). В этих же осях можно построить зависимости Ф = f (FВН) и Ф = f (Fм):

. (9.11)

Для последовательно включенных участков ФСТ = Ф поэтому указанное выражение записывается в виде

, (9.12)

отсюда

. (9.13)

Полученная зависимость нелинейна так как по мере увеличения магнитной индукции материала внешнего магнитопровода его магнитная проницаемость падает (кривая Ф(FВН) на рис.11).

При выполнении условия (9.7) поток рассеяния пропорционален внешней МДС:

Ф = Fм = FBH, (9.14)

и эта зависимость может быть построена в тех же координатных осях (кривая Ф (FBH) на рис.11).

Просуммировав ординаты указанных кривых построим ту же зависимость (9.7) с учётом нелинейности

Рис. 11. Совместная работа постоянного магнита с

внешней магнитной цепью

ФBH = Ф + Ф = f (FBH).


Совместная работа постоянного магнита и внешней магнитной цепи возможна согласно (9.7) и (9.10) при равенстве магнитных потоков и МДС т.е. в точке пересечения линии возврата магнита и вебер-амперной характеристики внешней магнитной цепи (точка А на рис.11).

В тех случаях, когда внешняя магнитная цепь не насыщена вебер-амперная характеристика изображается прямой проведённой относительно оси абсцисс под углом

 (9.15)

где ВН магнитная проводимость внешней магнитной цепи.

Совместная работа магнита и внешней цепи соответствует рабочей точке 1 с координатами (Н1 В1).

Если магнитная цепь имеет обмотку по которой протекает ток то к МДС магнита будет добавляться МДС обмотки F. Эта МДС не влияет на характеристики внешней магнитной цепи. Поэтому для учёта её влияния достаточно сместить вебер-амперную характеристику внешней цепи ФВН = f (FВН) параллельно самой себе на величину F в зависимости от её полярности. Случай размагничивания показан на рис. 11.

Для того чтобы МДС обмотки не вызывала размагничивания постоянного магнита необходимо ограничить её величину: F FРАЗМ.

Подмагничивание магнита не вызывает ухода рабочей точки с линии возврата и величина МДС обмотки в этом случае не ограничивается.

Таким образом задача расчёта магнитной цепи заключается в том чтобы зная характеристики постоянного магнита внешней магнитной цепи и величину размагничивающей МДС обмотки выбрать положение рабочей точки обеспечивающей максимум энергии или другими словами минимальный объем магнита.


  1. Расчёт оптимальных параметров постоянного магнита


Пусть задана кривая размагничивания постоянного магнита

с известными параметрами Br, Hc, a.

Введём относительные величины:

где в качестве масштабов выбраны mB = Br; mH = Hc; m = Br / HC; mФ = Br SM; mF = HC lM; m = mФ / mF; mW = Br HC / 2.

Кривая размагничивания в относительных единицах записывается в виде

. (9.16)

Допустим что рабочая точка магнита положение которой необходимо определить изображается на рис. 12 точкой 1. Положение этой точки как было показано выше соответствует точке пересечения линии возврата и вебер-амперной характеристики внешней цепи. При отсутствии насыщения наклон последней определяется выражением

tg = ВН. (9.17)

Линия возврата проходит под углом

 (9.18)

причём относительная проницаемость возврата связана с формой кривой размагничивания соотношением

. (9.19)

Положим, что задана максимальная размагничивающая МДС и соответствующая ей напряжённость магнитного поля HM.

Выражая координаты рабочей точки 1 через координаты точки 2 лежащей на кривой размагничивания подставляя полученные выражения в уравнение кривой размагничивания (9.16) и решая его относительно индукции в окончательном виде получим

. (9.20)

Определим удельную энергию магнита в рабочей точке:

. (9.21)



Рис.12. К расчёту оптимальных размеров магнита постоянного

тока


Подставляя (9.20) в (9.21) и исследуя полученную функцию на экстремум определим оптимальную магнитную проводимость внешней цепи соответствующую максимуму энергии магнита:

. (9.22)

Используя выражение (9.13) выразим ВН.ОПТ через параметры внешней магнитной цепи:

. (9.23)

Отсюда при известной площади магнита находят его длину:

. (9.24)

Если пренебречь падением магнитного потенциала во внешнем магнитопроводе т.е. считать СТ =  то полученное выражение упрощается и принимает вид:

. (9.25)

При равенстве площадей магнитного зазора и магнита будем иметь

. (9.26)

Величина относительной магнитной индукции при оптимальном режиме постоянного магнита записывается в виде

 (9.27)

а относительная напряжённость магнитного поля при этом

. (9.28)

Пример № 1. Постоянный магнит из сплава ЮНДК имеет следующие характеристики: Br = 102 Тл; Hc = 110 кА/м; = 06417. Величина относительной напряжённости размагничивающего магнитного поля . Магнитная проницаемость материала внешней магнитной цепи равна бесконечности а площади поперечного сечения магнита и зазора одинаковы.

Определить отношение длины магнита к длине воздушного зазора для оптимально выбранной рабочей точки.

Р е ш е н и е. Коэффициент характеризующий форму кривой размагничивания,

Относительная проницаемость возврата

.

Оптимальная проводимость внешней цепи в относительных единицах

.

Масштаб магнитной проницаемости

m = Br / HC= 102 / (110 103) = 92727 10-6 Гн/м.

Магнитная проницаемость воздушного зазора в относительных единицах

.

Отношение длины магнита к длине воздушного зазора:

.

Относительная магнитная индукция:

Относительная напряжённость магнитного поля

.

Относительная удельная энергия магнита

.

Графическое построение решения задачи представлено на рис. 13 .

При заданной величине внешнего размагничивания режим работы магнита в точке 1 будет оптимальным. При увеличении магнитной проводимости внешней цепи свыше оптимального значения (например, вебер-амперная характеристика, изображаемая прямой ОА2) удельная энергия магнита уменьшается. При данном значении магнитной проводимости внешней цепи относительные значения магнитной индукции напряжённости магнитного поля и удельной энергии магнита соответственно равны:

Уменьшение магнитной проводимости внешней цепи недопустимо, так как при этом уменьшается величина .



Рис. 13. Графическое построение решения примера № 1


Пример №2. Внешняя магнитная цепь и внешнее размагничивание имеют те же что в примере1 параметры и величины. Определить отношение длины магнита к длине воздушного зазора, если использовать магнит на основе редкоземельных элементов типа КС 37А с параметрами:

Br = 082 Тл; Hс = 560 kA; = 028.

Р е ш е н и е. Коэффициент характеризующий форму кривой размагничивания,

Относительная магнитная проницаемость возврата

.

Оптимальная магнитная проводимость внешней цепи

.

Относительная магнитная проницаемость воздушного зазора

.

Отношение длины магнита к длине воздушного зазора

.

Сравнивая между собой магниты ЮНДК с магнитами на основе редкоземельных элементов видим что объём последних при прочих равных условиях в 11 раз меньше. Такое положение объясняется значительно большими удельными энергиями последних.


10. ПРИМЕР РАСЧЁТА МАШИНЫ ПОСТОЯННОГО

ТОКА


Исходные данные для расчёта:

машина постоянного тока генератор

полезная мощность РН = 80 Вт;

номинальное напряжение UН = 230 В;

частота вращения nН об/мин;

возбуждение параллельное;

режим работы S1, продолжительный;

исполнение закрытое.


10.1. Основные размеры машины


п/п

Рассчитываемая

величина

Используемая информация

Результаты расчёта

1

Магнитная ин- дукция в зазоре

Табл. 2

B = 045 Тл

2

Линейная токовая нагрузка

Табл. 2

AS = 8000 А/м

3

Коэффициент полюсной дуги

Разд.1 п.3

 = 065

4

Отношение длины якоря к его диаметру

Разд.1 п.3

= 14

5

КПД генератора

(предваритель-но)

Табл. 1

Н= 059

п/п

Рассчитываемая

величина

Используемая информация

Результаты расчёта

6

Машинная постоянная

(1.11)

7

Расчётная мощность

(1.6)

8

Диаметр якоря

(1.12)

9

Длина якоря

(1.13)

l0= 14 004=0056 м

10

Окружная скорость

(1.14)

Va= 3140043000/60 = 6283 м/с

11

Число полюсов


2 p = 2

12

Полюсное деление

(1.15)

 = 314004/2 = 00628 м

13

Расчётная полюсная дуга

(1.16)

b0 = 065 00628 = 00408 м

14

Частота перемагничивания

(1.17)

f = 1300060 = 50 Гц

15

Воздушный зазор

(1.22)

 = 04 006288000/045= 44610-4 м,

принимаем = 4510-4 м


  1. Расчёт обмотки якоря


Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: