Xreferat.com » Рефераты по педагогике » Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников

Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников

ОГЛАВЛЕНИЕ


Введение

Глава 1. Теоретические основы формирования представления о функциональной зависимости у младших школьников

Понятие «функциональная зависимость» в психолого-педагогической литературе

Педагогические идеи преподавания функциональной зависимости в начальной школе

Виды упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников

Глава 2. Опытно-экспериментальная работа по формированию представлений о функциональной зависимости у младших школьников с применением комплекса упражнений

2.1. Диагностика уровней сформированности представлений младших школьников о функциональной зависимости

2.2. Реализация комплекса упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников

Заключение

Библиография

Приложения


Введение


Понятие функциональной зависимости является одним из ведущих в математической науке, поэтому сформированность представлений понятия у младших школьников представляет важную задачу в целенаправленной деятельности учителя по развитию математического мышления и творческой активности детей. Развитие функционального мышления предполагает, прежде всего, развитие способности к обнаружению новых связей, овладению общими учебными приемами и умениями.

Формирование представления о функциональной зависимости способствует формированию мыслительных операций и воспитанию интеллектуальных качеств личности. Направления подобной работы выражаются в характере задач, предлагаемых учащимся. Материал начального математического курса содержит достаточное количество примеров, на которых можно разъяснить зависимость одной величины от другой. К ним, в частности, относятся: задачи на составление и решение уравнений, оптимизационные и комбинаторные задачи, задачи с величинами, находящимися в прямой и обратной зависимости, задачи с использованием таблиц, числовой оси и координатной плоскости.

Все это и обусловило актуальность темы исследования.

При изучении психолого-педагогической литературы нами было выявлено противоречие между необходимостью формирования представлений младших школьников о функциональной зависимости и малым количеством разработок по технологии педагогической организации этого процесса в начальной школе.

Выявленное противоречие позволило обозначить проблему исследования: изучение возможностей комплекса упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

Данная проблема позволила сформулировать тему исследования: «Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников».

Объект исследования: процесс формирования представлений о функциональной зависимости у младших школьников.

Предмет исследования: комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

Цель исследования: теоретически выявить и путем опытно-экспериментальной работы проверить эффективность комплекса упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

Изучение психолого-педагогической литературы по теме исследования позволило выдвинуть следующую гипотезу: предполагается, что формирование представлений о функциональной зависимости у младших школьников будет успешнее при использовании специально подобранного комплекса упражнений.

В соответствии с целью и гипотезой исследования были определены следующие задачи:

1. Проанализировать методическую литературу по проблеме исследования.

2. Рассмотреть понятие «функциональная зависимость» в психолого-педагогической литературе.

3. Исследовать педагогические идеи преподавания функциональной зависимости в начальной школе.

4. Экспериментальным путем проверить эффективность комплекса упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

Теоретико-методологическая основа исследования: методические и научные исследования формирования функциональной зависимости в трудах М.А. Бантовой, Л.Г. Петерсон, Е.Д. Цыдыповой, системный подход, принцип ведущей роли обучения в развитии, теория поэтапного формирования умственных действий П.Я. Гальперинп, Н.Ф.Талызиной, теория о структуре учебной деятельности Д.Б. Эльконина, В.В. Давыдова, методическая концепция развивающего обучения математике в 1-4 классах Н.Б.Истоминой и других.

Для решения поставленных задач и проверки гипотезы были использованы следующие методы исследования:

теоретические: анализ психолого-педагогической, дидактической, методической, научно-методической литературы и документов по проблемам формирования представления функциональной зависимости; анализ изучения функционального материала в теории и практике обучения математике в начальной школе.

экспериментальные: анкетирование, тестирование, наблюдение, беседы с учителями и учащимися, констатирующий, формирующий и сравнительный эксперименты, экспериментальное преподавание (организация учебной деятельности учащихся 3 классов, направленной на подготовку к формированию представлений функциональной зависимости посредством комплекса упражнения), статистические методы интерпретации данных эксперимента.

Опытно-экспериментальная база исследования: МОУ СОШ №31 города Ишима. В эксперименте участвовали учащиеся 3 «А» и 3 «Б» классов.

Исследование проводилось в три этапа.

Первый этап – постановочный (01.02.10 – 01.03.10) – выбор и осмысление темы. Изучение психолого-педагогической литературы, постановка проблемы, формулировка цели, предмета, объекта, задач исследования, постановка гипотезы.

Второй этап – собственно-исследовательский (02.03.10 – 02.04.10) – разработка комплекса мероприятий и их систематическое проведение, обработка полученных результатов, проверка гипотезы.

Третий этап – интерпретационно-оформительский (03.04.10 – 03.05.10) – обработка и систематизация материала.

Научная новизна исследования: исследования состоит в том, что представления о функциональной зависимости младших школьников впервые рассматривается как самостоятельная исследовательская проблема; экспериментально проверена эффективность комплекса упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

Практическая значимость заключается в том, что выводы и результаты курсовой работы могут быть использованы в учебно-воспитательном процессе общеобразовательных учреждений.

Структура и объем работы: работа состоит из введения, двух глав, заключения, библиографического списка, включающего 37 наименований, приложения. Работа включает таблицы (6), иллюстрирована рисункам (3). Общий объем работы 50 страниц компьютерного текста.


Глава 1. Теоретические основы формирования представления о функциональной зависимости у младших школьников


Понятие «функциональная зависимость» в психолого-педагогической литературе


Начиная с XVII в. одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности, она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур.

Те вавилонские ученые, которые 4-5 тысяч лет назад нашли для площади S круга радиусом r формулу S=3r2 (грубо приближенную), тем самым установили, пусть и не сознательно, что площадь круга является функцией от его радиуса. Таблицы квадратов и кубов чисел, также применявшиеся вавилонянами, представляют собой задания функции [13, с.117].

Однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало в XVII в. в связи с проникновением в математику идеи переменных. В “Геометрии” Декарта и в работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функции от абсцисс (х); путь и скорость - функции от времени (t) и тому подобное [13, с.117].

Четкого представления понятия функции в XVII в. еще не было, путь к первому такому определению проложил Декарт, который систематически рассматривал в своей “Геометрии” лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться таким образом с понятием аналитического выражения - формулы.

Слово “функция” (от латинского functio - совершение, выполнение) Лейбниц употреблял с 1673 г. в смысле роли (величина, выполняющая ту или иную функцию). Как термин в нашем смысле выражение “функция от х” стало употребляться Лейбницем и И. Бернулли; начиная с 1698 г. Лейбниц ввел также термины “переменная” и “константа” (постоянная). Для обозначения произвольной функции от х Иоганн Бернулли применял знак j х, называя j характеристикой функции, а также буквы х или e; Лейбниц употреблял х1, х2 вместо современных f1(x), f2(x). Эйлер обозначал через f : х, f : (x + y) то, что мы ныне обозначаем через f (x), f (x + y). Наряду с j Эйлер предлагает пользоваться и буквами F, Y и прочими. Даламбер делает шаг вперед на пути к современным обозначениям, отбрасывая эйлерово двоеточие; он пишет, например, j t, j (t + s) [2, с.109].

Явное определение функции было впервые дано в 1718 г. одним из учеников и сотрудников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли: “Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных” [21, с.44].

Леонард Эйлер во “Введении в анализ бесконечных” (1748) примыкает к определению своего учителя И. Бернулли, несколько уточняя его. Определение Л. Эйлера гласит: “Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств”. Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки. В некоторых своих произведениях Л. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную “свободным влечением руки”. В связи с таким взглядом Л. Эйлера на функцию между ним и его современниками, в первую очередь его постоянным соперником, крупным французским математиком Даламбером, возникла большая полемика вокруг вопроса о возможности аналитического выражения произвольной кривой и о том, какое из двух понятий (кривая или формула) следует считать более широким. Так возник знаменитый спор, связанный с исследованием колебаний струны [19, с.123].

В “Дифференциальном исчислении”, вышедшем в свет в 1755 г, Л. Эйлер дает общее определение функции: “Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых”. “Это наименование, - продолжает далее Эйлер, - имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других”. На основе этого определения Эйлера французский математик С. Ф. Лакруа в своем “Трактате по дифференциальному и интегральному исчислению”, опубликованном в 1797 г., смог записать следующее: “Всякое количество, значение которого зависит от одного или многих других количеств, называется функцией этих последних независимо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому” [2, с.112].

Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.

Большой вклад в решение спора Эйлера, Даламбера, Д. Бернулли и других ученых XVIII в. по поводу того, что следует понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (1768-1830), занимавшийся в основном математической физикой. В представленных им в Парижскую Академию наук в 1807 и 1811 гг., работах по теории распространения тепла в твердом теле Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.

Из трудов Фурье явствовало, что любая кривая независимо от того, из скольких и каких разнородных частей она составлена, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем “Курсе алгебраического анализа”, опубликованном в 1821 г., французский математик О. Коши обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом. Последний стал тормозить требуемое математикой и естествознанием расширение понятия функции [21, с.47].

В 1834 г. в работе “Об исчезании тригонометрических строк” Н. И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755 г., писал: “Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной... Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе” [20, с.110].

Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. В 1837 г. немецкий математик П. Лежен-Дирихле так сформулировал общее определение понятия функции: “у есть функция переменной х (на отрезке a Ј х Ј b), если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие - аналитической формулой, графиком, таблицей либо даже просто словами” [14, с.332].

Таким образом, примерно в середине XIX в. после длительной борьбы мнений понятие функции освободилось от уз аналитического выражения, от единовластия математической формулы. Главный упор в новом общем определении понятия функции делается на идею соответствия.

Во второй половине XIX в. после создания теории множеств в понятие функции, помимо идеи соответствия, была включена и идея множества. Таким образом, в полном своем объеме общее определение понятия функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция у = f (х), или что множество А отображено на множество В. В первом случае элементы х множества А называют значениями аргумента, а элементы у множества В - значениями функции; во втором случае х - прообразы, у - образы. В современном смысле рассматривают функции, определенные для множества значений х, которые, возможно, и не заполняют отрезка a Ј x Ј b, о котором говорится в определении Дирихле. Достаточно указать, например, на функцию-факториал y = n , заданную на множестве натуральных чисел. Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например к геометрическим фигурам. При любом геометрическом преобразовании (отображении) мы имеем дело с функцией.

Общее определение функций по Дирихле сформировалось после длившихся целый век дискуссий в результате значительных открытий в физике и математике в XVIII и первой половине XIX в. Дальнейшее развитие математической науки в XIX в. основывалось на этом определении, ставшим классическим. Но уже с самого начала XX в. это определение стало вызывать некоторые сомнения среди части математиков. Еще важнее была критика физиков, натолкнувшихся на явления, потребовавшие более широкого взгляда на функцию. Необходимость дальнейшего расширения понятия функции стала особенно острой после выхода в свет в 1930 г. книги “Основы квантовой механики” Поля Дирака, крупнейшего английского физика, одного из основателя квантовой механики. Дирак ввел так называемую дельта-функцию, которая выходит далеко за рамки классического определения функции. В связи с этим советский математик Н. М. Гюнтер и другие ученые опубликовали в 30-40-х годах нашего столетия работы, в которых неизвестными являются не функции точки, а “функции области”, что лучше соответствует физической сущности явлений [16, с.113].

В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 г. 28-летний советский математик и механик Сергей Львович Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенных функций внесли ученики и последователи Л. Шварца - И.М. Гельфанд, Г.Е. Шилов и другие.

Прослеживая исторический путь развития понятия функции, невольно приходишь к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом. Новые открытия и запросы естествознания и других наук приведут к новым расширениям понятия функции и других математических понятий. Математика - незавершенная наука, она развивалась на протяжении тысячелетий, развивается в нашу эпоху и будет развиваться в дальнейшем.

Обоснование функциональной линии как ведущей для школьного курса математики — одно из крупнейших достижений современной методики. Однако реализация этого положения может быть проведена многими различными путями; многообразие путей вызвано фундаментальностью самого понятия функции.

Для того чтобы составить представление об этом многообразии, сравним две наиболее резко различающиеся методические трактовки этого понятия; первую мы назовем генетической, а вторую — логической.

Генетическая трактовка понятия функции основана на разработке и методическом освоении основных черт, вошедших в понятие функции до середины XIX в. Наиболее существенными понятиями, которые при этой трактовке входят в систему функциональных представлений, служат переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости.

Генетическое развертывание понятия функции обладает рядом достоинств. В нем подчеркивается «динамический» характер понятия функциональной зависимости, легко выявляется модельный аспект понятия функции относительно изучения явлений природы. Такая трактовка естественно увязывается с остальным содержанием курса алгебры, поскольку большинство функций, используемых в нем, выражаются аналитически или таблично.

Генетическая трактовка понятия функции содержит также черты, которые следует рассматривать как ограничительные. Одним из очень существенных ограничений является то, что переменная при таком подходе всегда неявно (или даже явно) предполагается пробегающей непрерывный ряд числовых значений. Поэтому в значительной степени понятие связывается только с числовыми функциями одного числового аргумента (определенными на числовых промежутках). В обучении приходится, используя и развивая функциональные представления, постоянно выходить за пределы его первоначального описания [18, с.234].

Логическая трактовка понятия функции исходит из положения о том, что строить обучение функциональным представлениям следует на основе методического анализа понятия функции в рамках понятия алгебраической системы. Функция при таком подходе выступает в виде отношения специального вида между двумя множествами, удовлетворяющего условию функциональности. Начальным этапом изучения понятия функции становится вывод его из понятия отношения.

Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств; язык школьной математики при этом обогащается. Помимо формул и таблиц, здесь находят свое место задание функции стрелками, перечислением пар, использование не только числового, но и геометрического материала; геометрическое преобразование при таком подходе оказывается возможным рассматривать как функцию. Обобщенность возникающего понятия и вытекающие отсюда возможности установления разнообразных связей в обучении математике — основные достоинства такой трактовки.

Однако выработанное на этом пути общее понятие оказывается в дальнейшем связанным главным образом с числовыми функциями одного числового аргумента, т. е. с той областью, в которой оно гораздо проще формируется на генетической основе.

Таким образом, если генетический подход оказывается недостаточным для формирования функции как обобщенного понятия, то логический обнаруживает определенную избыточность. Отметим, что различия в трактовках функции проявляются с наибольшей резкостью при введении этого понятия. В дальнейшем изучении функциональной линии различия постепенно стираются, поскольку изучается в курсах алгебры и начал анализа не само понятие функции, а в основном конкретно заданные функции и классы функций, их разнообразные приложения в задачах естествознания и общественного производства.

В современном школьном курсе математики в итоге длительных методических поисков в качестве ведущего был принят генетический подход к понятию функции. Одновременно учитывается все ценное, что можно извлечь из логического подхода. Исходя из этого при формировании понятий и представлений, методов и приемов в составе функциональной линии система обучения строится так, чтобы внимание учащихся сосредоточивалось, во-первых, на выделенных и достаточно четко разграниченных представлениях, связанных с функцией, и, во-вторых, на установлении их взаимодействия при развертывании учебного материала. Иными словами, в обучении должна быть выделена система компонентов понятия функции и установлена связь между ними. В эту систему входят такие компоненты:

- представление о функциональной зависимости переменных величин в реальных процессах и в математике;

- представление о функции как о соответствии;

- построение и использование графиков функций, исследование функций;

- вычисление значений функций, определенных различными способами.

В процессе обучения математике все указанные компоненты присутствуют при любом подходе к понятию функции, но акцент может быть сделан на одном из них. Как только что мы отметили, функциональный компонент является основой введения и изучения понятия функции. На этой основе при организации работы над определением вводятся и другие компоненты, проявляющиеся в различных способах задания функциональной зависимости и ее графического представления [1, с.215].

Функциональная зависимость - форма устойчивой взаимосвязи между объективными явлениями или отражающими их величинами, при которой изменение одних явлений вызывает определенное количественное изменение др. Объективно функциональная зависимость проявляется в виде законов и отношений, обладающих точной количественной определенностью. Они могут быть в принципе выражены в виде уравнений, объединяющих данные величины или явления как функцию и аргумент. Функциональная зависимость может характеризовать связь:

1) между свойствами и состояниями материальных объектов и явлений;

2) между самими объектами, явлениями или же материальными системами в рамках целостной системы более высокого порядка;

3) между объективными количественными законами, находящимися в отношении субординации, в зависимости от их общности и сферы действия;

4) между абстрактными математическими величинами множествами, функциями или структурами, безотносительно к тому, что они выражают. Функциональная зависимость предполагает, что явления, подчиняющиеся ей, характеризуются через определенные параметры, константы, конкретные условия, количественные законы. Функциональная зависимость не тождественна причинной связи. Наряду с явлениями, в которых причинная связь выражается через объективные функциональные отношения, существуют и функциональная зависимость между свойствами тел или математическими величинами, не являющиеся причинными связями [2, с.113].

Таким образом, понятие функции выступает в курсе математики как определённая математическая модель, что и является мотивировкой для его углублённого изучения. Функциональная зависимость – это зависимости одной переменной от другой. Функциональная зависимость двух количественных признаков или переменных состоит в том, что каждому значению одной переменной всегда соответствует одно определенное значение другой переменной.

В следующем параграфе мы рассмотрим особенности представлений о функциональной зависимости у младших школьников.


Педагогические идеи преподавания функциональной зависимости в начальной школе


В течение нескольких столетий понятие функции изменялось и совершенствовалось. Необходимость изучения функциональной зависимости в школьном курсе математики начальной школы была в центре внимания педагогической печати уже со второй половины XIX века. Большое внимание этому вопросу уделили в своих работах такие известные методисты, как М. В. Остроградский, В. Н. Шкларевич, С. И. Шохор-Троцкий, В. Е. Сердобинский, В. П. Шереметевский.

Первый этап - этап введения понятия функции (в основном, через аналитическое выражение) в школьный курс математики. Например, в учебнике Н. Ш Фусса "Начальные основания чистой математики" в разделе "Основания дифференциального и интегрального исчислений" приводилось следующее определение: "Функцией переменной величины называется выражение, состоящее из сей переменной, соединенной с постоянными величинами" [7, с.220].

На собрании комиссии преподавания математики отдела обучения Московского Общества распространения технических знаний В.П. Шереметевский и В.Я. Сердобинский представили радикальное решение проблемы введения функциональной зависимости в школьную математику в виде рекомендации "построения курса школьной математики на основе идеи функциональной зависимости". Математическая комиссия, функционировавшая в 1900 г. в Министерстве Народного Образования, предусмотрела идею включения в программу функциональной зависимости в связи с изучением элементов аналитической геометрии. Эти предложения начали осуществляться с 1903 г. при обучении математике в Кадетском корпусе, а с 1907 г. - в выпускных классах реальной школы.

Второй этап введения понятия функции в курс начальной школы характеризуется в основном переходом к графическому изображению функциональной зависимости и расширением круга изучаемых функций.

На Международном конгрессе в Риме в 1908 г. Ф. Клейн изложил основные принципы в решении вопроса о месте и роли понятия функции в школьной математике: "Мы..., стремимся положить в основу преподавания понятие функции, ибо это есть то понятие, которое в течение последних двухсот лет заняло центральное место всюду, где только мы встречаем математическую мысль. Это понятие мы желаем выработать при преподавании столь рано, как это только возможно, постоянно применяя графический метод изображения каждого закона в системе координат (хОу), которая теперь употребляется при всяком практическом применении математики». Истинное значение имеет предложение Ф. Клейна о введении общего понятия функции не в форме абстрактного понятия, а на конкретных примерах, которые «...сделали бы это понятие живым достоянием ученика, но непременно это понятие, как фермент, должно проникнуть во все преподавание математики в средней школе" [19, с.124].

Активное участие в борьбе за реформу математического образования приняли передовые русские преподаватели математики. Функциональная зависимость нашла свое отражение в новых программах по математике. Большое внимание вопросам, связанным с идеей функциональной зависимости, уделили два Всероссийских съезда преподавателей математики, созванных в 1911 г. (г. Санкт-Петербург) и 1913 г. (г. Москва).

После съездов в 1911-1916 гг. вышло большое количество учебных пособий, которые отражали смешение вопросов о трактовке понятия функции и способов ее задания, т.е. содержали рассмотрение способов задания функции (аналитического, графического, табличного) в контексте понятия функции.

Третий этап развития русской школы начался в 20-е гг. двадцатого столетия. Анализ методической литературы советского периода показал, что введение понятия функции в школьный курс математики сопровождалось бурными дискуссиями, и позволил нам выделить четыре основных проблемы, вокруг которых существовали расхождения во мнениях методистов, а именно: 1) цель и значение изучения понятия функции учащимися; 2) подходы к определению функции; 3) вопрос функциональной пропедевтики; 4) место и объем функционального материала в курсе школьной математики начальной школы.

Первые послереволюционные программы, составленные в 1918-1921гг., отражали стремление их авторов к коренному преобразованию школьного курса математики начальной школы. При их разработке были учтены основные достижения передовой педагогической мысли того времени: курс математики строился на основе понятия функции. Авторы программ считали, что все включенное в программу "должно быть проработано основательно, главным образом, в направлении развития функционального мышления, при этом идейной и практической стороне должно отдать предпочтение перед формальной" [11, с.380].

Анализ программ позволил выделить их положительные и отрицательные стороны. Главное достоинство, на наш взгляд, - это разделение вопросов о трактовке понятия функциональной зависимости и способах задания функции. Общим недостатком была перегруженность их в той' или иной степени учебным материалом, который, к тому же, был распределен по годам обучения без учета возрастных особенностей учащихся. Как следствие, на практике не удалось в полном объеме выполнить предъявленные данными программами требования.

Не исправили положение программы на основе "комплексного" метода, суть которого состояла в том, что взамен систематического изложения школьного курса математики начальной школы, опирающегося на внутреннюю логику предмета, преподавание строилось в соответствии с последовательностью, содержанием и основными идеями комплексных схем. Известный советский методист Н.Н. Никитин указывал на утилитарность комплексных программ и методических указаний к ним, приведшую к снижению уровня математической подготовки учащихся. "Учащиеся получали поверхностное, случайное знакомство со многими вопросами из математики, но по-настоящему прочно и сознательно знать ничего не могли" [37, с.115].

Итак, данный этап, полностью обусловленный политической и экономической нестабильной ситуацией в России 20-х гг., характеризуется разногласием в действиях методистов, их стремлением к отказу от достижений в области отечественной методики преподавания математики. Разногласия методистов в решении проблем, связанных с определением цели и значения изучения функции учащимися, места и объема функционального материала в курсе школьной математики, а также отсутствие единого мнения по вопросу функциональной пропедевтики привели к ухудшению качества знаний учащихся.

Кризисная ситуация в области преподавания математики вызвала необходимость пересмотра и проверки методов школьной работы.

Четвертый этап обусловлен переводом экономики РСФСР на плановую основу.

В 1931-34 годы была предпринята попытка перехода школьного образования на позиции систематического и прочного усвоения наук. В данный период срок обучения в школе был увеличен до десяти лет, основной формой работы в школе был утвержден урок, была восстановлена роль учебника как основного руководства для ученика, с систематическим изложением основ наук и полным охватом содержания программы по предмету.

Формирование представления о функции, прежде всего как об аналитическом выражении, ученые расценивают как проявление формализма в преподавании, для которого "характерно неправомерное доминирование в сознании и памяти учащихся привычного внешнего (словесного, символического или образного) выражения математического факта над содержанием этого факта" [21, с.46].

Они считали, что в начальной школе понятие функции необходимо изучать на основе понятия соответствия. Для нашего исследования важным является подход А.Я. Хинчина к разработке системы упражнений, способствующих усвоению понятия функции. Он указывал, что традиционные примеры, рассматриваемые непосредственно после введения понятия функции, способны разрушить положительный эффект определения и привить учащимся мысль, что формальное определение само по себе, а в действительности функция есть просто формула. По его мнению, уже среди первых примеров функциональной зависимости наряду с традиционными алгебраическими и геометрическими соотношениями необходимо рассматривать и функции, заданные без использования формулы.

Данный период характеризуется недостаточностью времени на изучение функций, непродуманностью систем упражнений, непониманием учащимися истинной сущности понятия функции, низким уровнем функциональных и графических навыков выпускников школ.

Таким образом, вновь возникла потребность в реформировании преподавания математики в начальной школе. Перестройка всей школьной математики на основе теоретико-множественного подхода ознаменовала пятый этап развития идеи функциональной зависимости. Идея, теоретико-множественного подхода была предпринята группой французских ученых, объединившихся под псевдонимом Николя Бурбаки. В г. Роймоне (Франция, 1959 г.) состоялось международное совещание, на котором было провозглашено свержение всех обычных курсов. В центре внимания оказались структуры и объединения всей школьной математики на базе теории множеств [25, с.174].

Важную роль в развитии идей реформы сыграли статьи В.Л. Гончарова, в которых автор указывал на важность ранней и длительной функциональной пропедевтики, предлагал использовать упражнения, заключающиеся в выполнении ряда заранее указанных числовых подстановок в одном и том же заданном буквенном выражении. Эти упражнения, наряду с совершенствованием вычислительных навыков, могли бы служить и идеям функциональной пропедевтики. Ученый особое внимание отводил построению графика функции, заданной использованным для вычислений буквенным выражением. Особую целесообразность он видел в том, "чтобы две капитальной важности и высокой трудоемкости проблемы — сообщения учащимся прочных навыков арифметических вычислений и пропедевтическое ознакомление их с идеей функции могли быть разрешаемы совместно" [22, с.153].

Таким образом, стабилизация программ и учебников создала почву для возникновения положительных сдвигов в качестве функциональных знаний учащихся. В конце шестидесятых - начале семидесятых, наряду с отрицательными отзывами, в печати стали появляться и такие, в которых отмечалось определенное улучшение знаний школьников о функциях и графиках. Однако общий уровень математического развития учащихся в целом оставался недостаточным. В школьном курсе математики по-прежнему неоправданно много времени отводится формальной подготовке и не уделяется должного внимания формированию представлений младших школьников о функциональной зависимости.

Виды упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников мы рассмотрим в следующем параграфе.


Виды упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников


Для организации учебной деятельности учащихся начальных классов, направленной на эффективную подготовку к формированию представлений о функциональной зависимости должны выполняться следующие дидактические условия: наличие в курсе математики идей, непосредственно связанных с функциональными представлениями, таких как идея изменения, соответствия, закономерности и зависимости; наличие в содержании курса математики понятий, необходимых для осознанного усвоения понятия функции; создание проблемных ситуаций в процессе усвоения программного содержания; систематическое использование различных моделей (предметной, вербальной, символической, схематической и графической); использование учебных заданий, в

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: