Xreferat.com » Рефераты по педагогике » Методика решения иррациональных уравнений и неравенств в школьном курсе математики

Методика решения иррациональных уравнений и неравенств в школьном курсе математики

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ

Математический факультет

Кафедра математического анализа и методики преподавания математики


Курсовая работа

Методика решения иррациональных уравнений и неравенств в школьном курсе математики


Выполнила студентка IV курса

математического факультета группы М-41

Бузмакова И.С.

Научный руководитель Старостина О.В.


Киров 2006

Содержание


Наиболее важные примы преобразования уравнений

Методика решения иррациональных уравнений

Тождественные преобразования при решении иррациональных уравнений

Применение общих методов для решения иррациональных уравнений

Методика решения иррациональных неравенств

Заключение

Список библиографии

Введение


Материал, связанный с уравнениями и неравенствами, составляет значительную часть школьного курса математики.

В школе иррациональным уравнениям и неравенствам уделяется достаточно мало внимания.

Однако задачи по теме "Иррациональные уравнения и неравенства" встречаются на вступительных экзаменах, и они довольно часто становятся "камнем преткновения".

Так как при решении иррациональных уравнений и неравенств в школе применяются тождественные преобразования, то чаще всего возникают ошибки, которые обычно связаны с потерей или приобретением посторонних корней в процессе решения. Поэтому необходимо рассмотреть такие ситуации, показать, как их распознавать и как с ними можно бороться.

Цель данной курсовой работы: разработать методику обучения решению иррациональных уравнений и неравенств в школе, а также выявить возможности использования общих методов решения уравнений при решении иррациональных уравнений и неравенств.

Для достижения поставленной цели необходимо решить следующие задачи:

Проанализировать действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств;

Изучить стандарты образования по данной теме;

Изучить статьи и учебно-методическую литературу по данной теме;

Подобрать теоретический материал, связанный с равносильностью уравнений и неравенств, равносильностью преобразований, методами решения иррациональных уравнений и неравенств;

Показать, как общие методы решения уравнений применимы для решения иррациональных уравнений и неравенств;

Подобрать примеры решения иррациональных уравнений и неравенств для демонстрации излагаемой теории.

Гипотеза исследования: применение разработанной методики решения иррациональных уравнений и неравенств позволит учащимся решать иррациональные уравнения и неравенства на сознательной основе, выбирать наиболее рациональный метод, применять разные методы решения, в том числе те, которые не рассмотрены в школьных учебниках.

Анализ школьных учебников по алгебре и началам анализа


При изучении любой новой темы в основном курсе школы встает проблема изложения данной темы в школьных учебниках. Поэтому сначала проанализируем действующие учебники по алгебре и началам математического анализа для 10-11 классов, чтобы выяснить, как в них представлены методы решения иррациональных уравнений и неравенств.

"Алгебра и начала анализа, 10-11", авт.А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др. [13].

Материал по данной теме изложен в IV главе "Показательная и логарифмическая функции", как пункт "Иррациональные уравнения" параграфа "Обобщение понятия степени". Автор рекомендует рассматривать решение иррациональных уравнений в теме "Уравнения, неравенства, системы", где систематизируются сведения об уравнениях.

В пункте "Иррациональные уравнения" дается понятие иррационального уравнения, приводится несколько примеров простейших иррациональных уравнений вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики Методика решения иррациональных уравнений и неравенств в школьном курсе математики, которые решаются с помощью возведения обеих частей уравнения в квадрат. Найденные корни проверяются подстановкой в исходное уравнение, при этом обращено внимание на те случаи, когда могут появиться посторонние корни. Показано, что кроме возведения в квадрат иррациональные уравнения удобно решать, используя равносильный переход от уравнения к системе, состоящей из уравнения и неравенства. Рассмотрен пример иррационального уравнения, содержащего корень третьей степени. Для того чтобы "избавиться от радикала", обе части такого уравнения возводятся в куб.

После пункта приведены упражнения для закрепления умений решать иррациональные уравнения. В №№417-420 предложены простейшие уравнения, решить которые можно с помощью возведения обеих частей уравнения либо в квадрат, либо в куб, а также используя равносильные переходы. Такие задачи, по мнению авторов учебника необходимо уметь решать для получения удовлетворительной оценки. Задачи же в №№422-425 чуть сложнее. Здесь уже уравнения содержат корни выше третьей степени.

Иррациональным неравенствам в данном пункте внимания не уделено.

В заключительной главе учебника "Задачи на повторение" помещены практические упражнения для повторения курса. Здесь в параграфе "Уравнения, неравенства, системы уравнений и неравенств" иррациональным уравнениям и неравенствам посвящен пункт "Иррациональные уравнения и неравенства".

"Алгебра и начала анализа, 10-11", авт. Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. [1].

В данном учебнике нет материала, посвященного иррациональным уравнениям и неравенствам. Лишь в конце ученика помещены упражнения для итогового повторения курса алгебры. Здесь есть только один номер для решения простейших иррациональных уравнений (№801). Упражнений для решения иррациональных неравенств нет.

Это можно объяснить тем, что, по мнению автора, умение решать иррациональные неравенства не является обязательным для учащихся и соответствующая тема может быть предложена для изучения самостоятельно или на факультативных занятиях. [14] Поэтому в учебнике предложены задачи для внеклассной работы, где встречаются иррациональные уравнения (№№934, 947) и неравенства (№942).

"Алгебра и начала анализа, 10-11", авт.М.И. Башмаков [2].

В данном учебном пособии иррациональные уравнения и неравенства рассматриваются в заключительной VI главе "Уравнения и неравенства". Глава предназначена для систематизации и обобщения сведений об уравнениях, неравенствах и системах уравнений. В начале главы помещена вводная беседа, которая состоит из трех пунктов.

В пункте "Уравнение" вводятся такие понятия как уравнение, неизвестные, корень уравнения, подробно рассказывается, что значит решить уравнение с одним или двумя неизвестными, что означает найти корни уравнения, приведены некоторые рекомендации о форме записи ответа при решении уравнений с одним или двумя неизвестными.

В пункте "Равносильность" выясняется, когда одно уравнение является следствием другого, вводится понятие равносильных уравнений. Автор подробно останавливается на некоторых полезных преобразованиях уравнений:

Тождественное преобразование одной из частей уравнения и перенос членов из одной части уравнения в другую с противоположным знаком.

Переход к совокупности уравнений.

Переход к системе уравнений.

Все равносильные переходы представлены в виде схем и рассмотрены на примерах.

В следующем пункте "Неравенство" приведены примеры верных и неверных числовых неравенств, основные правила преобразования неравенств, при этом используются знаки следствия и равносильности. Вводятся такие понятия как ОДЗ неравенства, решение неравенства, равносильные неравенства, выясняется, когда одно неравенство является следствием другого.

§1 "Уравнения с одним неизвестным" состоит из трех пунктов: "Общие приемы", "Примеры решения уравнений" и "Приближенные методы вычисления корней". В первом пункте перечислены стандартные уравнения, которые были изучены ранее. Основным шагом в решении уравнения является преобразование уравнения к одному из стандартных. Приведены некоторые наиболее употребительные приемы, общие для всех типов уравнений:

Разложение на множители.

Введение нового неизвестного.

Графический метод.

Во втором пункте на ряду со стандартными уравнениями рассматривается решения одного простейшего иррационального уравнения с помощью равносильного перехода к системе.

В третьем пункте кратко рассказывается о таких методах приближенного вычисления корней как метод половинного деления, метод хорд и касательных.

§ 2 "Неравенства с одним неизвестным" состоит из двух пунктов: "Общие приемы" и "Примеры решения неравенств". В первом пункте демонстрируется два приема решения неравенств: разложение на множители и метод замены неизвестного.

Во втором пункте на примерах показана техника решения неравенств с помощью переходов, сохраняющих равносильность. На ряду со стандартными неравенствами рассматривается решение одного простейшего иррационального неравенства.

Глава заканчивается заданиями. К заголовку "Иррациональные уравнения" относится №17, к заголовку "Иррациональные неравенства" - №21, в котором есть задание со звездочкой, то есть относящееся к разделу "трудные задачи".

Иррациональным уравнениям и неравенствам в главе уделено мало внимания: решение одного простейшего иррационального уравнения и одного неравенства.

Цель данной главы - обобщить имеющиеся у учащихся знаний об уравнениях, неравенствах и системах уравнений, поэтому здесь подробно не рассматриваются конкретные виды уравнений, а лишь повторяются сведения об изученных видах уравнений и методах их решения. [14]

"Алгебра и начала анализа, 10-11", авт.А.Г. Мордкович [10], [11].

Данное учебное пособие состоит из двух частей: учебника и задачника.

В первой части данного учебного пособия материал, касающийся иррациональных уравнений и неравенств, изучается в последней VIII главе "Уравнения и неравенства. Системы уравнений и неравенств", завершающей изучение школьного курса алгебры и начал математического анализа. Здесь уравнения и неравенства рассматриваются с самых общих позиций. Это, с одной стороны, своеобразное подведение итогов и, с другой стороны, некоторое расширение и углубление знаний.

В первых трех параграфах этой главы подведены итоги изучения в школе уравнений, неравенств. Использованы следующие термины:

равносильность уравнений, равносильность неравенств;

следствие уравнения, следствие неравенства;

равносильное преобразование уравнения, неравенства;

посторонние корни (для уравнений);

проверка корней (для уравнений).

Сформулированы теоремы:

о равносильности уравнений;

о равносильности неравенств.

Даны ответы на четыре главных вопроса, связанных с решением уравнений:

как узнать, является ли переход от одного уравнения к другому равносильным преобразованием;

какие преобразования переводят данное уравнение в уравнение-следствие;

как сделать проверку, если она сопряжена со значительными трудностями в вычислениях;

в каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Перечислены возможные причины расширения области определения уравнения, одна из которых - освобождение в процессе решения уравнения от знаков корней четной степени; указаны причины, по которым может произойти потеря корней при решении уравнений.

Выделены четыре общих метода решения уравнений:

замена уравнения h (f (x)) =h (g (x)) уравнением f (x) =g (x);

метод разложения на множители;

метод введения новых переменных;

функционально-графический метод.

Что касается иррациональных уравнений, то им в данном учебном пособии уделено достаточно большое внимание.

На примере иррационального уравнения показано как в три этапа осуществляется решение любого уравнения:

Первый этап - технический;

Второй этап - анализ решения;

Третий этап - проверка.

Также на примере иррационального уравнения показано, как сделать проверку, если проверка корней с помощью их подстановки в исходное уравнение сопряжена со значительными вычислительными трудностями.

Метод замены уравнения h (f (x)) =h (g (x)) уравнением f (x) =g (x) применятся при решении иррациональных уравнений для перехода от уравнения Методика решения иррациональных уравнений и неравенств в школьном курсе математики к уравнению Методика решения иррациональных уравнений и неравенств в школьном курсе математики.

Метод введения новой переменной также разобран и на примере решения иррационального уравнения.

Отдельный пункт посвящен иррациональным неравенствам. Здесь с теоретическим обоснованием рассматривается решение неравенств вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики, Методика решения иррациональных уравнений и неравенств в школьном курсе математики. В первом случае иррациональное неравенство заменяется равносильной системой неравенств Методика решения иррациональных уравнений и неравенств в школьном курсе математики во втором - равносильной совокупностью систем неравенств Методика решения иррациональных уравнений и неравенств в школьном курсе математики Методика решения иррациональных уравнений и неравенств в школьном курсе математики

Система задач изложена в той же последовательности, что и соответствующий материал в I части. В § 55 "Равносильность уравнений" изложены различные типы заданий на равносильность и следствие уравнений, в том числе и иррациональных. В § 56 "Общие методы решения уравнений" помещены задания для использования четырех методов, изложенных в I части данного учебного пособия, для решения уравнений. Все задачи в соответствии с ними разбиты на четыре блока, в каждом из которых встречаются иррациональные уравнения. В § 57 "Решение неравенств с одной переменной" изложены различные типы заданий на равносильность и следствие неравенств, в том числе и иррациональных.

В № 1673 нужно решить простейшие иррациональные уравнения. №№1674, 1675, 1712-1719 - упражнения выше среднего уровня для решения иррациональных уравнений, №№1790, 1791 - неравенств. № 1792 - упражнение повышенной трудности для решения иррациональных неравенств.

Много заданий, в которых требуется решить "смешанное" уравнение или неравенство, то есть логарифмическое, показательное или тригонометрическое уравнение или неравенство, в которое входят и иррациональные выражения. Среди этих заданий есть задания как базового, так и повышенного уровня.

В I части учебника много внимание уделено равносильности уравнений и неравенств, достаточно строго рассмотрены общие методы решения уравнений, с оговоркой о потере корней и приобретении посторонних. II часть учебника отличается обилием и разнообразием задач. Достаточно много задач на равносильность и следствие уравнений и неравенств.

"Сборник задач по алгебре, 8-9", авт. М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич [5]

Данная книга представляет собой сборник задач по курсу алгебры, предназначенный для учащихся 8-9 классов с углубленным изучением математики.

В начале параграфа "Степень с рациональным показателем" помещен справочный материал теоретического характера, посвященный иррациональным уравнениям и неравенствам. Описаны такие пути решения иррациональных уравнений, как:

возведение обеих частей уравнения в натуральную степень с последующей проверкой найденных корней;

переход к равносильным системам, в которых учитывается область определения уравнения и требование неотрицательности обеих частей уравнения, возводимых в четную степень.

При решении иррациональных неравенств либо используется метод интервалов, либо с помощью равносильных преобразований заменяется данное иррациональное неравенство системой (или совокупностью систем) рациональных неравенств.

В параграфе рассмотрено три способа решения иррационального уравнения вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики:

переход к равносильной системе;

введение новой переменной;

использование свойства монотонности функций.

Среди упражнений, помещенных в данном параграфе, есть упражнения для закрепления умений и навыков решать иррациональные уравнения и неравенства. В №№115-117 необходимо доказать, что уравнение не имеет решения, в №№118-119 - ответить на вопрос: равносильны ли уравнения. №№120-144 предлагаются для решения иррациональных уравнений, №№145-155 - для решения неравенств описанными выше способами.

"Алгебра и математический анализ, 11", авт.Н.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд [4].

Данное учебное пособие представляет собой продолжение книги "Алгебра и начала анализа" для 10 класса и предназначено как для общеобразовательной школы, так и классов и школ с углубленным изучением курса математики.

Иррациональные уравнения и неравенства изучаются в параграфе "Степенная функция. Иррациональные выражения, уравнения и неравенства" VIII главы "Показательная, логарифмическая и степенные функции".

Пункт "Иррациональные уравнения" начинается с определения иррационального уравнения и примеров таких уравнений. Далее сформулирована и доказана теорема о равносильных уравнениях, на которой основано решение иррациональных уравнений. Из теоремы следует, что если в ходе решения иррационального уравнения приходилось возводить обе его части в степень с четным показателем, то могут появиться посторонние корни. Поэтому, чтобы не было необходимости подставлять найденные корни в данное уравнение, сформулировано еще два утверждения о равносильном переходе от уравнений вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики и Методика решения иррациональных уравнений и неравенств в школьном курсе математики к системам, состоящим из уравнения и неравенства. Далее на примерах решения иррациональных уравнений демонстрируются данные равносильные переходы. Также автор рекомендует перед возведением обеих частей уравнения в некоторую степень "уединить радикал", то есть представить уравнение в виде Методика решения иррациональных уравнений и неравенств в школьном курсе математики. Далее данный метод применяется для решения иррациональных уравнений

После данного пункта помещены упражнения для закрепления умений решать иррациональные уравнения описанными выше методами - №216. В №215 необходимо доказать, что данные иррациональные уравнения не имеют решений.

В следующем пункте "Иррациональные неравенства" сформулированы приемы решения иррациональных неравенств вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики и Методика решения иррациональных уравнений и неравенств в школьном курсе математики с помощью равносильного перехода к системе неравенств в первом случае и совокупности систем неравенств - во втором. Рассматривается решение иррационального неравенства вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики с помощью равносильного перехода к неравенству Методика решения иррациональных уравнений и неравенств в школьном курсе математики. Решение каждого из видов неравенств демонстрируется на примерах.

После данного пункта помещены упражнения для закрепления умения решать иррациональные неравенства с помощью равносильных переходов, описанных выше - №217.

Все утверждения, сформулированные в данном учебном пособии, изложены со строгим обоснованием. Описан полезный метод при решении иррациональных уравнений - метод "уединения радикала". Не смотря на то, что учебник не отличается обилием упражнений, предлагаемые задания разнообразны, различной степени сложности

Проведенный анализ позволяет сделать следующие выводы:

В учебнике [1] материала по методам решения иррациональных уравнений нет. В учебниках [13] и [4] материал по теории методов решения скудный, но довольно строгий. В большом объеме теория по общим методам решения рассмотрена учебниках [2] и [10].

В каждом учебнике рассмотрены два основных способа решения: возведение обеих частей уравнения в степень, с последующей подстановкой полученных корней в исходное уравнение, а также решение уравнений с помощью равносильных переходов к системе, состоящей из уравнения и неравенства. В учебниках [2] и [10] рассмотрены такие общие методы решения уравнений как метод разложения на множители, метод введения новых переменных, функционально-графический метод

В учебниках [1] и [13] не рассмотрено решение иррациональных неравенств. В учебнике [2] материал по решению иррациональных неравенств скудный, изложение не достаточно строгое. В учебниках [4] и [10] теория по способам решения иррациональных неравенств вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики, Методика решения иррациональных уравнений и неравенств в школьном курсе математики рассмотрена подробно, изложение теории строгое. Только в учебнике Виленкина рассматривается решение иррационального неравенства вида Методика решения иррациональных уравнений и неравенств в школьном курсе математики.

Наиболее большой объем упражнений для решения иррациональных уравнений и неравенств представлен в учебниках [11] и [5]. В учебнике [4] упражнений не много, но они разнообразны.

Основные понятия, относящиеся к уравнениям


Равенство вида


Методика решения иррациональных уравнений и неравенств в школьном курсе математики, (1)


где Методика решения иррациональных уравнений и неравенств в школьном курсе математики и Методика решения иррациональных уравнений и неравенств в школьном курсе математики - некоторые функции, называют уравнением с одним неизвестным x (с одной переменной x). Это равенство может оказаться верным при одних значениях x и неверным при других значениях x.

Число a называется корнем (или решением) уравнения (1), если обе части уравнения (1) определены при Методика решения иррациональных уравнений и неравенств в школьном курсе математики и равенство Методика решения иррациональных уравнений и неравенств в школьном курсе математики является верным. Следовательно, каждый корень уравнения (1) принадлежит множеству, которое является пересечением (общей частью) областей определения функций Методика решения иррациональных уравнений и неравенств в школьном курсе математики и Методика решения иррациональных уравнений и неравенств в школьном курсе математики и называется областью допустимых значений (ОДЗ) уравнения (1).

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Если в условиях задачи не указано, на каком множестве нужно решить уравнение, то решение следует искать на ОДЗ этого уравнения.

В процессе решения часто приходится преобразовывать уравнение, заменяя его более простым (с точки зрения нахождения корней).

Есть одно правило, которое не следует забывать при преобразовании уравнений: нельзя выполнять преобразования, которые могут привести к потере корней.

Назовем преобразование уравнения (1) допустимым, если при этом преобразовании не происходит потери корней, то есть получается уравнение


Методика решения иррациональных уравнений и неравенств в школьном курсе математики, (2)

которое либо имеет те же корни, что и уравнение (1), либо, кроме всех корней уравнения (1), имеет хотя бы один корень, не являющийся корнем уравнения (1), посторонний для уравнения (1) корень. В связи с этим используют следующие понятия.

Уравнение (2) называется следствием уравнения (1), если каждый корень уравнения (1) является корнем уравнения (2).

Уравнения (1) и (2) называются равносильными (эквивалентными), если каждое из этих уравнений является следствием другого. Иными словами, уравнения (1) и (2) равносильны, если каждый корень уравнения (1) является корнем уравнения (2) и наоборот, каждый корень уравнения (2) является корнем уравнения (1). Уравнения, не имеющие корней, считаются равносильными.

Если уравнения (1) и (2) равносильны, то пишут Методика решения иррациональных уравнений и неравенств в школьном курсе математикиМетодика решения иррациональных уравнений и неравенств в школьном курсе математикиМетодика решения иррациональных уравнений и неравенств в школьном курсе математики или (1) Методика решения иррациональных уравнений и неравенств в школьном курсе математики (2), а если уравнение (2) является следствием уравнения (1), то пишут Методика решения иррациональных уравнений и неравенств в школьном курсе математикиМетодика решения иррациональных уравнений и неравенств в школьном курсе математикиМетодика решения иррациональных уравнений и неравенств в школьном курсе математики или (1) Методика решения иррациональных уравнений и неравенств в школьном курсе математики (2).

Отметим, что если исходное уравнение с помощью допустимых преобразований заменено другим, причем в процессе преобразования хотя бы один раз уравнение заменялось неравносильным ему следствием, то проверка найденных корней путем подстановки в исходное уравнение является обязательной.

Если же при каждом преобразовании уравнение заменялось равносильным, то проверка не нужна (не следует путать проверку с контролем вычислений).

Рассмотрим еще одно понятие, связанное с решением уравнений. Будем говорить, что уравнение (1) равносильно совокупности уравнений Методика решения иррациональных уравнений и неравенств в школьном курсе математики, (3) если выполнены следующие условия: каждый корень уравнения (1) является корнем, по крайней мере, одного из уравнений (3); любой корень каждого из уравнений (3) является корнем уравнении я (1).

Если указанные условия выполнены, то множество корней уравнения (1) является объединением множеств корней уравнений (3).

Если уравнение записано в виде


Методика решения иррациональных уравнений и неравенств в школьном курсе математики, (4)


то каждое решение этого уравнения является решением, по крайней мере, одного из уравнений


Методика решения иррациональных уравнений и неравенств в школьном курсе математики (5)


Однако нельзя утверждать, что любой корень каждого из уравнений (5) есть корень уравнения (4).

Например, если Методика решения иррациональных уравнений и неравенств в школьном курсе математики, то Методика решения иррациональных уравнений и неравенств в школьном курсе математики - корень уравнения Методика решения иррациональных уравнений и неравенств в школьном курсе математики, но число 3 не является корнем уравнения (4), так как функция Методика решения иррациональных уравнений и неравенств в школьном курсе математики не определена при Методика решения иррациональных уравнений и неравенств в школьном курсе математики

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: