Xreferat.com » Рефераты по педагогике » Математика и физика в средней школе

Математика и физика в средней школе

то есть через модули соответствующих векторов. В этом случае формула скорости имеет вид , формула пути будет, а формула выразится так .

Несоблюдение этого правила часто приводит к ошибочным решениям. Рассмотрим это на примере следующей задачи (задача №4 из упр. 17 учебника для 9 класса):

«Конькобежец, масса которого равна 50 кг, после разгона скользит по льду, пройдя до остановки 40 м. Сила трения постоянна и равна 10 Н. Сколько времени продолжается торможение?»

рис 2.7

Выполнив чертеж, обращаем внимание учащихся на то, что к конькобежцу приложены три силы: сила тяжести , сила реакции (направленная нормально поверхности движения конькобежца) и сила сопротивления . Рассмотрим проекции этих сил на вертикальную ось y и запишем соответствующее уравнение динамики:

, так как

поскольку , то .

Между тем для проекций на ось х уравнение динамики имеет вид:

откуда (поскольку и ) получим:

, или (где и - модули векторов и ).

Искомую величину - время – можно определить из уравнений кинематики:

Если теперь выразить проекции векторов через их модули, то получим:

Откуда находим, что , или . Поскольку , то .

Обычно учащиеся поступают по другому: они записывают уравнения согласно учебнику так:

Откуда получают или . Если заранее не сделать разъяснений, то ученики считают, что величины, входящие в формулы, - модули соответствующих векторов и тогда знак минус вызывает у них недоумение. Если же произвести дальнейшее преобразования и подставить в последнюю формулу , то получиться .

Этот результат вызывает у школьников ещё большее неумение, так как им не ясно, как избавиться от знака минус.

В данной задаче легко найти выход из затруднительного положения. Однако в более сложных задачах можно не заметить этого и получить неправильный ответ.

Поэтому имеет смысл на первом этапе решения по динамике рассматривать только случаи равноускоренного движения тел, а затем, после приобретения учащимися прочных знаний навыков, осторожно перейти к анализу и решению задач на равнозамедленное движение.

Глава 3. развитие понятия функции в школьном курсе физике.


§3.1. Функция как важнейшее звено межпредметных связей.


В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13].

Функция является одним из основных понятий математики, выражающих зависимость одних переменных величин от других. Как и остальные понятия математики, оно сложилось не сразу, а прошло долгий путь развития, опираясь в начале на представление о переменной величине, а затем на понятия теории множеств.

Трактовка функции как зависимости одних переменных величин от других вводится следующим образом. Если величины x и y связаны так, что каждому значению х соответствует определенное значение y, то y называют функцией аргумента х.

Соотношение между x и y записывают так: . Если связь между х и y такова, что одному и тому же значению х соответствует несколько значений y, то у называют многозначной функцией аргумента х.

Иными словами, это можно сформулировать следующим образом [11], чтобы задать функцию , следует указать: 1) множество значений Х, которое может принимать х (область задания функции); 2) множество значений Y, которое может принимать у (область значения функции); 3) правило, по которому значения х из Х соотносятся со значениями у из Y. В физике чаще всего правило отнесения значениям х соответствующих им значений у задается формулой, устанавливающей, какие вычислительные операции надо произвести над х, чтобы получить у.

Функция иногда задается своим графиком, те есть множеством точек х, у – плоскости, у которой х принадлежит области задания функции, а .

Развитие математики в XIX-XX вв. привело к необходимости дальнейшего обобщения понятия функции. Оно заключалось, с одной стороны, в перенесении этого понятия с переменных действительных чисел на переменные объекты любой природы, с другой стороны, в определении понятия «функция» без упоминания о её аналитическом изображении. Такое определение функции стало возможным благодаря развитию теории множеств.

Понятие «множество» можно представить себе [10] как совокупность некоторых объектов, объединенных между собой по какому-либо признаку. Важным вопросом, возникшим в применении к множествам, был вопрос об их количественном сравнении между собой. Возможность сравнительной оценки множеств опирается на понятие взаимно однозначного соответствия между двумя множествами [11]. Если каждому элементу множества Х поставлен в соответствие в силу какого-либо правила или закона некоторый определенный элемент множества Y и при этом каждый элемент множества Y оказывается поставленным в соответствие одному и только одному элементу множества Х, то говорят, что между множествами Х и Y установлено взаимно однозначное соответствие.

Общее определение однозначной функции можно сформулировать следующим образом: пусть А и В – два множества, составленные из элементов любой природы, и М – множество упорядоченных пар, такое, что каждый элемент х, принадлежащий А , входит в одну и только одну пару из М; тогда М задает на А функцию [11]. Множество А называют областью определения функции , а множество В – областью значения этой функции.

Понятие функции играет в физике исключительно важную роль. По существу любой физический закон лишь тогда считается четко сформулирован, когда ему придана математическая форма, точнее – если он записан в виде некоторой функциональной зависимости между физическими величинами.

Важно учитывать и другой факт. Не всякая формула, связывающая физические величины, выражает причинно-следственную зависимость между ними. В ряде случаев аналитическая запись отражает лишь определенное соответствие между физическими величинами. Примерами могут служить формулы для расчета плотности твердых тел (), удельной теплоты плавления (). На основании, например, первой формулы можно, казалось бы, сказать, что при , но такое (математически правильное) высказывание неверно с физической точки зрения.

Функциональное соответствие, связывающее давление Р и объем V идеального газа при постоянной температуре (закон Бойля - Мариотта), записывается так: .

При изотермическом процессе причиной изменения давления идеального газа служит изменение его объема, и наоборот. Причинно-следственную связь между физическими величинами для этих и аналогичных случаев назовем взаимной.


§3.2. Формирование физико-математических понятий: производная, первообразная и интеграл в школе.


Как могут быть реализованы межпредметные связи физики и математики при формировании таких понятий, как функция, величина, производная, первообразная и интеграл. Причины, побудившие обратится к этому вопросу следующие. Во-первых, позднее изучение в курсе математики названных понятий затрудняет преподавание, например, механики в курсе физики. Во-вторых, изучению всего курса физики препятствует недостаточное использование математического аппарата, которое происходит либо из-за позднего его формирования у учащихся, либо из-за отсутствия согласованности действий преподавателей физики и математики в использовании общих физико-математических понятий.

Выход из создавшейся ситуации состоит в совместном формировании у учащихся понятий математического анализа в курсе физики и математики. Именно при параллельном изучении основ механики и основ математического анализа открываются наибольшие возможности для формирования как физических понятий – мгновенная скорость, мгновенная ускорение, перемещение, работа и т. д., так и математических – производная, первообразная и интеграл.

Согласно такой методике реализация межпредметных связей предпочтение следует отдать скорей наглядности физики, чем строгости математических доказательств. Поэтому на уроках математики, например, производную сумму вводить при помощи закона сложения скоростей; при выводе формулы производной функции, основанном на использовании на индукции, математические выкладки подтверждаются примерами из физики. Рассмотрение физического примера – движение тела, брошенного вертикально вверх – облегчает задачу формирования понятий возрастающей и убывающей функций, позволяет мотивированно ввести понятие второй производной и на этой основе получить правило определения выпуклости графика. Что касается понятий «первообразная» (неопределенный интеграл) и «интеграл» (определенный интеграл), то их формирование целесообразно проводить с широким использованием физических примеров, начиная с их определения, получения основного свойства первообразной и интеграла и кончая правилами интегрирования многочлена [14].

Для курса физики знание производной и интеграла открывает перспективы в плане возможности более строгого определения рода физических величин: точной записи второго закона Ньютона и закона электромагнитной индукции; получения формулы работы силы тяготения в сферически симметричном поле с последующим выводом второй космической скорости; ЭДС индукции, возникающей в рамке при вращении в магнитном поле; доказательства инвариантности действия сил относительно инерциальных систем отсчета; упрощения работы с графиками; и наконец, рассмотрения видов равновесия тел не только с позиций действия сил, но и с энергетической точки зрения. Знание учащимися производной и интеграла позволяет выработать у них общий подход к определению физических величин и решению графических задач физического содержания.

С этой целью можно, например, использовать алгоритмические схемы, являющиеся общими для определения математических и функциональных физических зависимостей. Так схема общего подхода к определению физических понятий с помощью производной может быть следующей [12]:

  1. Убедившись в возможности применения понятия производной, записать функциональную зависимость в виде .

  2. Найти отношение приращения функции к приращению аргумента, то есть среднюю скорость изменения функции .

  3. Осуществить предельный переход над функцией при условии , записав выражение:

.

  1. Сформулировать определение физической величины по схеме: название физического понятия, определяемого как производная от данной функции; название аргумента.

Для определения физического понятия с помощью интеграла можно избрать следующую схему действия [14]:

  1. Убедиться в возможности применения понятия «интеграл» в данной ситуации: приблизительное значение искомой физической величины может быть представлена как сумма выражений , где - некоторое среднее значение функции на промежутке ; графически эта сумма должна соответствовать значению площади ступенчатой фигуры, а при площадь должна сводится к площади криволинейной трапеции.

  2. Записать искомую физическую величину как .

  3. Сформулировать: определение найденной физической величины, определяемой как интеграл от данной функции; название функции; название аргумента.

В большинстве случаев схема записи интеграла может быть иной. Поскольку интегрирование – это действие, обратное дифференцированию, применим следующий порядок действий:

    1. Записать производную искомой функции по соответствующему аргументу, например - .

    2. Определить функцию, от которой была найдена производная, то есть первообразную .

    3. Найти изменение искомой функции при соответствующих значениях аргумента: и , то есть интеграл , после чего сформулировать определение физической величины (см. выше пункт 3).

Преимущества, которые дает знание производной и интеграла для изучения курса физики в 9 – 11 классах, могут быть получены только в результате совместной работы над формированием понятий математического анализа на уроках физики и математики. На рисунке 3.1 приводится схема формирования понятий производная, первообразная и интеграл на уроках физики и математики [13].

Рис 3.1

При решении предлагаемых задач используются определения производной и первообразной, то есть понятий которые вводятся в разделе высшей математики, называемом математическим анализом и изучаемом в школе [15]:

Задача 1.Определите, при каком соотношении между внутренним и внешним сопротивлением электрической цепи полезная мощность имеет максимальное значение.

Решение: полезная мощность, выделяющаяся на резисторе R, по закону Джоуля – ленца равна:

где - сила тока, определяемая по закону Ома для полной цепи. Очевидно, что при (короткое замыкание) и при (цепь разомкнута). Исследуем, при каком соотношении между сопротивлениями r и R полезная мощность максимальна. Итак задача свелась с исследованию функции на экстремум. Вспомним условия экстремума. Построить график зависимости полезной мощности от R:

  1. Необходимое условие экстремума: если - точка экстремума дифференцируемой функции на интервале , то (теорема Ферма).

  2. Достаточное условие экстремума: если функция непрерывна в точке , в левой полуокружности этой точки имеет положительную производную, а в правой – отрицательную, то - точка максимума функции . Аналогично, если при переходе через точку производная меняет свой знак с «-» на «+», то - точка минимума функции. Вычислим производную:

.

Следовательно, мощность достигает максимума при , так как производная здесь обращается в ноль и при этом меняет знак. Максимум в этой точке является наибольшим значением функции на интересующем нас интервале, так как это единственный экстремум. Возьмем вторую производную:

.

Очевидно, что при имеется точка перегиба. Построим график функции, используя всю полученную информацию:


Рис 3.2


Задача 2: покажем, что действующее (эффективное) значение силы тока в цепи равно .

Решение: действующее значение силы переменного тока - это значение силы такого постоянного тока, при протекании которого в резисторе в течении одного периода выделяется такое же количество теплоты, что и при протекании данного переменного тока. Пусть переменный ток изменяется по синусоидальному закону:

, где - круговая частота, тогда .

Используя тождество:

Итак :.

Очевидно, что последнее слагаемое равно нулю. По определению это же количество теплоты , таким образом , откуда .

Заключение:

Анализ научно-методических публикаций по методике преподавания физики в средней школе показал, что в большинстве случаев предлагаемые подходы в обучении физики являются традиционными, направленными на усвоение физических понятий и закономерностей, определённых программой. А так как объем и содержание учебного материала, составляющие основу современного образования велики, то они могут быть усвоены учащимися только в системном единстве.

В общеобразовательной школе изучение математики и естественных дисциплин происходит параллельно, и таким образом, математика часто используется в физике и в определённой мере даже определяет ход физического образования. Преподавание физики и математики необходимо строить на взаимном использовании элементов математики в курсе физики и физических представлений при изучении алгебры и начала анализа. Это способствует решению трех главных дидактических задач:

  1. Повышение научности последовательности учебной информации;

  2. Стимулированию познавательных интересов и активного отношения школьников к усвоению знаний и вследствие этого ускорение их умственного развития;

  3. Формирование у учащихся научного мировоззрения.

Математический аппарат, используемый на уроках физики необходимо предварительно определить в соответствии с фундаментальными фактами, понятиями и теориями, содержащимися в учебной информации курса физики.

Литература:

  1. Методика обучения физике в школе в школах СССР и ГДР, под ред. Зубова В. Г., Разумовского В. Г., Вюншмана М., Либерса К. – М., Просвещение, 1978.

  2. Морозова О. А., Активное использование понятий и методов математического анализа в процессе преподавания темы «Электромагнитные колебания», Дипл. работа, Кемерово, КемГУ, Кафедра общей физики, 1995.

  3. Иванов А. И., О взаимосвязи школьных курсов физики и математики при изучении величин, - «Физика в школе», 1997, №7, стр. 48.

  4. Кожекина Т. В., Взаимосвязь обучения физике и математике в одиннадцатилетней школе, - «Физика в школе», 1987, №5, стр. 65.

  5. Тамашев Б.И., Некоторые вопросы связи между школьными курсами физики и математики, - «Физика в школе», 1982, №2, стр. 54.

  6. Кожекина Т. В., Никифоров Г. Г., Пути реализации связи с математикой в преподавании физики, - «Физики в школе», 1982, №3, стр. 38.

  7. Лернер Я. Ф., Векторные величины в курсе механике средней школы, - «Физика в школе», 1971, №2, стр. 36.

  8. Фурсов В. К., Окрестина И. А.. Конкретизация сведений о векторах в VIII классе, - «Физика в школе», 1977, №4, стр. 54.

  9. Урвачев Л. П., Эвинчик Э. Е., Введение понятия вектора и действий с векторами при изучении механики и математики в средней школе, - «Физика в школе», 1977, №5, стр. 40.

  10. Кожекина Т. В., Понятие функции в школьном курсе физики, - «Физика в школе», 1981, №1, стр. 39.

  11. Пинский А. А., К формированию понятия «функция» в школе, - «Физика в школе»,1977, №2,стр. 42.

  12. Синяков А. З., Об использовании понятия производной в курсе физики средней школе, - «Физика в школе», 1976, №4, стр. 37.

  13. Коробов В. А., Опыт применения математики в преподавании физики, - «Физика в школе», 1991, №4, стр. 23.

  14. Пинский А. А., Самойлова Т. С., Фирсов В. В., Формирование у учащихся общих физико-математических понятий, - «Физика в школе», 1986, №2, стр. 50.

  15. Парфентьева Н. А., Липкин Г. И., Использование элементов математического анализа, - «Физика», 2000, №3, стр. 9.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: