Xreferat.com » Рефераты по педагогике » Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах

Содержание.


Введение

Глава1. Теоретические основы изучения темы «Интеграл» с помощью моделей

Модели и моделирование в обучении

Психолого-педагогические и методические основы изучения интеграла в школьном курсе математики

1.3. Анализ школьных учебников алгебры и начал анализа

1.4. Физические модели при введении понятия интеграла

1.5. Различные методы изучения приложений интеграла в физике

Глава 2. Физические модели при изучении темы «Интеграл»

2.1. Введение понятия интеграла с помощью физических моделей

2.2. Изучение свойств определенного интеграла с помощью физических моделей

2.3. Физические модели при отработке техники интегрирования

2.4. Приложения интеграла в физике

Заключение

Библиография

Приложение


Введение.


Как известно, эффективному обучению во многом способствует решение задач с практическим содержанием. Потребность в использовании практических материалов при обучении школьников математике диктуется тем, что возникновение, формирование и развитие математических понятий имеют своим источником ощущения и восприятия, а также и тем, что в познавательной деятельности учащегося имеет место тесная связь логических процессов мышления и чувственных восприятий. Поэтому обращение к примерам из жизни, окружающей обстановке облегчает учителю возможность организовать учебную деятельность учащихся и поддерживать их интерес к обучению. В то же время, бурное развитие математики и физики не могло не наложить определенного отпечатка на уровень развития и направление интересов учащихся. Интерес молодежи к технике, физике и математике растет с каждым днем.

Математика использует физические задачи для иллюстрации некоторых процессов, явлений и их исследования. Физики же не могут обойтись без аппарата математики. Интеграл – не исключение. Определенный класс задач решается с его использованием. Поэтому довольно актуальным становится обучение учащихся математике (в частности изучение темы «Интеграл») через прикладные задачи физики.

Понятие интеграла является одним из основных в математике. Изучение этой темы завершает школьный курс математического анализа, знакомит учащихся с новым инструментом познания мира, а рассмотрение в школе применения интегрального исчисления к важнейшим разделам физики показывает учащимся значение и силу высшей математики.

Понятие интеграла не на много сложнее таких понятий, как «неизвестная величина» или «подобие треугольников», которые незыблемо входят в школьную программу. Давно пора сделать понятие интеграла достоянием всякого культурного человека, чем бы он ни занимался.

Анализ учебников и учебных пособий, содержащих материал по данной теме, показывает наличие разных мнений по поводу изложения этого достаточно сложного материала в школьном курсе и в определении содержания, необходимого для успешного усвоения и понимания основ интегрального исчисления.

Таким образом, актуальность темы работы обусловлена:

необходимостью полноценного изучения важнейших элементов интегрального исчисления в основной школе в связи с огромной значимостью и важностью этого материала для учащихся;

недостаточной разработанностью методики преподавания этого материала с помощью использования физических моделей в школьном курсе математики.

Исходя из вышесказанного, для исследования была выбрана тема «Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах».

Проблемой исследования является поиск путей методически грамотного применения физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники вычисления интегралов и изучении приложений с учетом психолого-педагогических основ изучения данной темы.

Объект исследования – процесс изучения основ интегрального исчисления с использованием физических моделей в курсе математики основной школы.

Предмет исследования – физические модели при изучении темы «Интеграл».

Основные цели данной работы – изучить различные подходы к введению понятия интеграла, изучению его свойств и приложений, определить достоинства и недостатки этих подходов, разработать методику изучения интеграла с использованием физических моделей, проанализировать и сделать выводы о правильности и целесообразности разработанной методики.

Гипотеза: изучение основ интегрального исчисления с помощью разработанной методики способствует осознанному качественному усвоению школьниками этого материала, развитию правильного представления об изучаемом понятии, его огромной значимости в физике.

Задачи исследования:

изучить и проанализировать научную, учебно-методическую и психолого-педагогическую литературу по теме исследования;

на основе анализа литературы разработать методику изучения некоторых вопросов интегрального исчисления в курсе математики основной школы;

Для достижения целей работы, проверки гипотезы и решения поставленных задач были использованы следующие методы:

изучение учебных пособий и методической литературы, содержащей этот материал;

анализ психологической, педагогической и методической литературы по данной теме.


Глава 1

Теоретические основы изучения темы «Интеграл» с помощью моделей


1.1. Модели и моделирование в процессе обучения


Модель - очень широкое понятие, включающее в себя множество способов представления изучаемой реальности.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование вначале этой модели. Многовековой опыт развития науки доказал на практике плодотворность такого подхода.

Под моделью понимается объект, воплощающий данную идею или интерпретирующий некоторую теорию. Построение объекта называется конкретизацией, или моделированием.

Моделирование представляет собой обязательный этап процесса научного познания. Между моделью и моделируемым объектом имеется определенное отношение – модельное отношение. Это отношение показывает, в каком смысле оригинал и его модель подобны, аналогичны.[9]

Применение метода моделирования при изучении математики в школе дает возможность получить наиболее достоверные (поскольку доказательство некоторых математических фактов в школьном курсе не предусмотрено) и наглядные результаты, раздвинуть границы знаний учащихся об окружающем мире, развивать их мышление.

Модель должна быть наилучшим образом приспособлена к восприятию учащихся и учитывать их психологические особенности. В процессе обучения учитель обязан помогать учащимся формировать научный взгляд на мир. В процессе моделирования учащиеся могут научиться таким операциям, как анализ изучаемого объекта, выполнение доказательств, объяснений и т.п.[9]

Операции над моделями учат школьников умению абстрагировать, конструировать, обобщать, т.е. способствуют развитию мышления. Таким образом, моделируя, учащиеся развивают свое логическое мышление.

В моделировании есть два заметно разных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Модель может, однако, отображать реальность более абстрактно - словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.д.

Современная физика – часть общечеловеческой культуры, характеризующей интеллектуальный уровень общества, степень понимания основ мироздания. Среди других наук физика по-прежнему сохраняет роль лидера естествознания, определяя стиль и уровень научного мышления. [9]

Поэтому среди возможных моделей при изучении математики в школе (в частности темы «Интеграл») наиболее актуальными являются физические модели. В работе были использованы:

известные законы физики (например, второй закон Ньютона в импульсном представлении, всемирный закон притяжения);

модели физических явлений, выраженные формулами, известными из школьных учебников физики (например, формула мощности постоянного тока, силы взаимодействия между зарядами);

задачи с физическим содержанием (например, задача о вытекании воды из сосуда, давлении жидкости на стенку).


1.2. Психолого – педагогические и методические основы изучения интеграла в школьном курсе математики


Необходимость изучения интеграла в школе характеризуется тем, что:

если изучать только производную, но не изучать интеграл, то цикл анализа одной переменной не будет завершен;

в приложениях (в том числе в физике) гораздо чаще, чем задачи на вычисление производной, её применение, используются задачи с использованием интеграла, интеграла и производной;

понятие интеграла очень существенно для общего образования учащихся (человек раньше стал решать интегральные задачи).

Целью изучения математического анализа (в том числе интегрального исчисления) в общеобразовательной школе является:

овладение основными понятиями (в частности, понятием интеграла);

обучение решению простейших задач на применение начал анализа в других школьных дисциплинах, в практике;

При рассмотрении понятия интеграла в школах с углубленным изучением математики возможно также и обучение простейшим методам интегрирования (технике вычисления интеграла).

Учителю в своей работе необходимо учитывать факторы, влияющие на успешность обучения.

Во-первых, следует тщательно отбирать теоретический материал, сочетая научность и доступность изложения. И хотя полностью реализовать принцип научности при изучении интеграла не удается, у учащихся все же формируются правильные представления о процессе познания и его закономерностях.

Содержание, формы и методы обучения должны учитывать реальные возможности учащихся, но, тем не менее, иметь достаточно высокий уровень трудности.

Во-вторых, необходимо учитывать общий уровень математической подготовки учащихся, особенности их мышления и восприятия и, в соответствие с этим, выбирать тот или иной путь изложения материала.

В-третьих, для лучшего запоминания материала, развития наблюдательности, для иллюстрации мыслей необходимо применять на уроке различные виды наглядности (чертежи, графики…)

И, наконец, в-четвертых, важную роль играет систематичность и последовательность в обучении.

Стройное, логичное изложение теоретического материала, а также хорошо подобранная система упражнений способствует развитию мышления, памяти, внимания и речи учащихся, формирует такие специальные качества, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их. Т. е., является одним из средств достижения цели общего образования.

Систему упражнений нужно строить так, чтобы способствовать усвоению основных понятий, активизировать мыслительную деятельность учащихся и постоянно поддерживать их интерес к уроку. Этому помогут задачи на исследование, доказательство.

При формировании основного понятия (интеграла) необходимо учитывать, что оно даётся в достаточно общей, абстрактной форме. Потому главная трудность состоит в конкретизации, т. е. в умении видеть за математическими терминами и их определениями конкретные образы. Здесь большую помощь ученику должны оказать хорошо подобранные примеры.

Так как изучаемое понятие достаточно сложно, то существует несколько стадий его усвоения. Хорошо овладеть понятием интеграла учащимся помогут специально подобранные упражнения.

Помимо знания определения понятия ученик должен, по возможности, иметь о них зрительное представление (например, определенный интеграл – перемещение точки за промежуток времени). Раз усвоенные физические образы, рисующие картину рассматриваемого явления, надолго остаются в памяти и живут в воображении изучающего.

Каждый теоретический факт, даже и доказанный учащимися самостоятельно, следует по возможности немедленно закреплять при выполнении конкретных упражнений.

Важно показывать учащимся прикладную значимость материала при изучении других школьных дисциплин, в частности, различных разделов физики.


1.3. Анализ школьных учебников алгебры и начал анализа


Проведём анализ некоторых школьных учебников алгебры и начал анализа с точки зрения использования различных подходов введении понятия интеграла, рассматриваемых в них приложений интеграла в физике.

В учебниках, как правило, используются следующие подходы к введению понятия определенного интеграла:

Интеграл как предел интегральных сумм.

Этот подход предполагает введение операции интегрирования как независимой операции; при этом интеграл определяется как предел последовательности, составленной из интегральных сумм. Начинается изучение в этом случае с рассмотрения конкретных задач, например, задачи о площади под кривой; задачи о работе силы и др. Затем, обобщив полученные результаты, переходят к определению интеграла как предела интегральных сумм.

Хотя данное определение громоздко, но идея метода наглядна (геометрическая интерпретация – площадь криволинейной трапеции). Вместе с определением интеграла получают и способ его вычисления. Но на практике для вычисления интеграла используют формулу Ньютона – Лейбница, которую при данном подходе необходимо доказать.

1) В учебнике А. Н. Колмогорова «Алгебра и начала анализа» при введении интеграла рассматривается задача о вычислении площади криволинейной трапеции. Автор приводит в учебнике два способа вычисления площади криволинейной трапеции: с помощью теоремы о площади криволинейной трапеции и с помощью интегральных сумм. Второй способ сводится к определению интеграла. С помощью интегральных сумм выводятся также формулы для вычисления объемов тел, работы переменной силы, а также нахождения массы стержня и центра масс.

Среди применений интеграла в данном учебнике выводится формула для нахождения работы переменной силы, формула вычисления массы стержня и центра масс. Все формулы выводятся одним способом: с помощью интегральных сумм. Для самостоятельного решения учащимся предлагается задача о нахождении кинетической энергии стержня и несколько задач на уже рассмотренные формулы. Причем задачи делятся на несколько уровней сложности, в том числе задачи повышенной трудности.

2) В учебнике Мордковича А. Г. «Алгебра и начала анализа» при введении понятия «Определенный интеграл» рассматриваются задачи, приводящие к данному понятию, а именно задача о вычислении площади криволинейной трапеции, задача о вычислении массы стержня и задача о перемещении точки. Все три задачи при их решении приводятся к одной и той же математической модели. При чем говорится о том, что многие задачи из различных областей науки и техники приводят в процессе решения к такой же модели. Далее дается математическое описание этой модели, которая была построена в трех рассмотренных задачах для непрерывной на отрезке [a; b] функции y=f(x):

разбивают отрезок [a; b] на n равных частей;

составляют сумму

Sn=f(x0)Δx0+f(x1) Δx1+…+f(xk) Δxk+…+f(xn-1) Δxn-1;

3) вычисляют Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Автор учебника поясняет, что в курсе математического анализа доказано, что этот предел существует. Его называют определенным интегралом от функции y=f(x) по отрезку [a; b].

После чего автор учебника возвращается к трем рассмотренным ранее задачам и результат, полученный при их решении, переписывает следующим образом:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, где S – площадь криволинейной трапеции, ограниченной графиком функции y=f(x);

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, где m – масса неоднородного стержня с плотностью p(х);

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, где s – перемещение точки, движущейся по прямой со скоростью v=v(t).

В учебнике в физических приложениях интеграла приводятся те же задачи, что и при введении понятия интеграла, а именно задачи о массе стержня и перемещении точки. Этим автор учебника и ограничивает изучение приложений интеграла в физике.

3) В учебнике М. И. Башмакова «Алгебра и начала анализа» тема «Интеграл и его применение» выделена в отдельную главу. Автор дает следующее определение интеграла: «Пусть дана положительная функция f, определенная на конечном отрезке [a; b]. Интегралом от функции f на отрезке [a; b] называется площадь её подграфика». Далее показывается, как вычислить эту площадь с помощью интегральных сумм и делается вывод, что интеграл равен пределу интегральных сумм. Иллюстрируется этот метод на задаче о нахождении объема лимона и нахождении работы по перемещению точки.

В данном учебнике рассмотрены наиболее разнообразные примеры приложений интеграла в физике. Задачи о работе силы, перемещении точки, о вычислении массы стержня, электрического заряда и нахождение давления воды на плотину приводятся в учебнике вместе с их теоретическим обоснованием (выводом). Без вывода представлены формулы нахождения работы по известной мощности и количества теплоты по известной теплоемкости. Однако, для самостоятельного решения учащимся предлагается мало задач.

4) В учебнике Никольского С. М. «Алгебра и начала анализа» рассмотрение задачи о вычислении площади криволинейной трапеции приводит к понятию интегральных сумм и пределу от них, после чего вводится определение определенного интеграла. Теоретическое обоснование применения определенного интеграла рассматривается в таких физических задачах, как задачи на работу силы, работу электрического заряда, на вычисление массы стержня переменной плотности, давления жидкости на стенку и центра тяжести. Среди приложений интеграла в физике рассматриваются следующие задачи (вместе с теоретическим их обоснованием): задачи о работе силы, работе электрического заряда, задача о массе стержня переменной плотности, задача о давлении жидкости на стенку, задача о нахождении центра тяжести системы материальных точек. Однако, автор учебника приводит очень скупую систему упражнений, при чем не использует в практических задачах и половины тех формул, которые были ранее выведены.

Интеграл как приращение первообразной.

Этот подход предполагает введение операции интегрирования как операции, обратной дифференцированию. При этом формула Ньютона – Лейбница практически служит определением интеграла.

При этом подходе не требуется специально выводить формулу Ньютона – Лейбница, с помощью которой доказываются многие свойства интеграла. Однако в этом случае идея метода суммирования отходит на второй план. Недостаток этого подхода состоит в том, что появляются затруднения при изучении приложений интеграла. В итоге все – таки приходится рассматривать интеграл как предел интегральных сумм, чтобы получить единый, достаточно общий метод решения задач геометрии, механики, электродинамики и других разделов физики. Это рассмотрение можно провести либо сразу после введения понятия интеграла, объяснив учащимся, что не всегда возможно найти первообразную данной функции, либо непосредственно при изучении приложений интеграла, рассмотрев этот метод на одной из задач.

5) В учебнике Ш. А. Алимова «Алгебра и начала анализа» перед введением понятия интеграла рассматривается задача о нахождении площади криволинейной трапеции, где вычисление площади сводится к отысканию первообразной F(х) функции f(x). Разность F(b)- F(a) называют интегралом от функции f(x) на отрезке [a; b]. Далее автор рассматривает вычисление площади криволинейной трапеции с помощью интегральных сумм, говорит о том, что такой способ приближенного вычисления интеграла требует громоздких вычислений и им пользуются в тех случаях, когда не удается найти первообразную функции. В качестве примеров применения интеграла приведены задачи о вытекании воды из бака и нахождении работы силы. Задачи для самостоятельного решения однотипны и их очень мало.

Задачи приложений, приведенные в выше рассмотренных учебниках, это наиболее распространенные примеры применения интеграла, однако, они не описывают и половины всех возможных приложений интеграла в физике.


1.4. Физические модели при введении понятия интеграла


Рассмотрим выше описанные подходы на наиболее распространенных среди авторов учебников примерах физических моделей из разных разделов физики (механика, электродинамика, кинематика и др.).

Интеграл как предел интегральных сумм.

1. Работа переменной силы.

Довольно распространенный пример практической задачи, решение которой сводится к вычислению определенного интеграла, это задача о работе переменной силы. [2], [8]

Задача. Предположим, что на точку, движущуюся по оси х, действует некоторая сила F, направленная по той же оси. Мы знаем, что если сила F постоянна, то работа равна Fs, где s – путь, пройденный точкой. Предположим теперь, что F меняется от точки к точке и нам известно её значение F(х) в каждой точке х некоторого промежутка [a; b]. Как найти работу А по перемещению точки из а в b?

Разобьем отрезок [a; b] на n отрезков. Будем приближенно считать, что на каждом отрезке сила постоянна. В качестве постоянной силы на отрезке [xk-1; xk] можно взять значение функции F в одной из точек этого отрезка, например в точке xk. Работу на k – отрезке пути приближенно можно представить как произведение F(xk)Δxk, а на всем отрезке – суммой:

An=F(x1) Δx1+…+F(xn) Δxn. (1)

Таким образом, работу А по перемещению точки из а в b можно приближенно вычислять по формуле (1).

Сумму (1) называют интегральной суммой функции F(x) на отрезке [a; b]. При этом предполагается, что функция F(x) непрерывна на отрезке [a; b] и может принимать любые значения. Если Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах и длины отрезков разбиения стремятся к нулю, то интегральная сумма An стремится к некоторому числу, которое и называют интегралом от функции F(x) на отрезке [a; b] и обозначают Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

2. Задача о вычислении массы стержня.

Довольно популярна среди авторов учебников задача о вычислении массы стержня. [8], [10]

Задача. Дан прямолинейный неоднородный стержень, плотность которого в точке x вычисляется по формуле p=p(x). Найти массу стержня.

Рассмотрим массу стержня на отрезке [a; b]. Разобьём отрезок на n равных частей. Будем приближенно считать, что на каждом отрезке плотность постоянна. В качестве постоянной плотности на отрезке [xk-1; xk] можно взять значение функции р в одной из точек этого отрезка, например в точке xk. Массу на k – отрезке приближенно можно представить как произведение р(xk)Δxk, а на всем отрезке – суммой:

mn=p(x1) Δx1+…+p(xn) Δxn. (2)

Таким образом, массу стержня m можно приближенно вычислять по формуле (2).

Точное значение массы стержня вычисляется по формуле

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Далее вводится понятие интеграла, как предела суммы.

3. Задача о перемещении точки.

При введении определенного интеграла, в качестве задачи, приводящей к данному понятию, наиболее рациональным и простым для понимания учащимися является рассмотрение задачи о перемещении точки, т. к. с обратной задачей школьники уже встречались при изучении применения производной в физике.

Между положением (координатной) точки и её скоростью есть известная связь, лежащая в основе математического анализа: скорость является производной от координаты по времени. Сама операция нахождения производной называется дифференцированием. Обратная задача – нахождение положения точки по её скорости – решается с помощью другой математической операции, называемой интегрированием.

Задача. Пусть по прямой движется материальная точка. Зависимость скорости от времени выражается формулой v=v(t). Найти перемещение точки за промежуток времени [a; b].

Если бы движение было равномерным, то задача решалась бы очень просто: s=vt, т. е. s=v(b-a). Для неравномерного движения разобьём промежуток времени [a; b] на n равных частей. Рассмотрим промежуток времени [tk-1; tk] и будем считать, что в этот промежуток времени скорость была постоянной, такой как в момент времени tk: v=v(tk). Перемещение точки за промежуток времени [tk-1; tk] приближенно можно представить как произведение v(tk)Δtk. Найдем приближенное значение перемещения s:

s ≈ Sn,

где Sk=v(t1) Δt1+…+v(tk) Δtk.

Точное значение перемещения вычисляется по формуле

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Далее вводится понятие интеграла, как предела суммы. [10]

Введение понятия интеграла как приращения первообразной ни в одном из рассмотренных учебников не используется, примеры данного метода введения будут приведены в следующей главе.


1.5. Различные методы изучения приложений интеграла в

физике.

Авторы различных учебников по–разному выводят формулы при изучении приложений интеграла. Рассмотрим несколько различных методов получения (вывода) формул.I. Составление интегральных сумм.Масса стержня переменной плотности.Будем считать, что отрезок [a; b] оси Ох имеет массу с переменной линейной плотностью ρ(х)Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах0, где ρ(х) – непрерывная на отрезке [a; b] функция. Общая масса этого отрезкаФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах,где a=x0<x1<…<xn=b, Δxi =xi+1-xi.Аналогично можно вывести формулы для нахождения работы силы, работы электрического заряда, давления жидкости на стенку, центра тяжести системы материальных точек. [11]Центр масс.При нахождении центра масс пользуются следующими правилами:Координата Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах центра масс системы материальных точек А1, А2,…, Аn с массами m1, m2,…, mn, расположенных на прямой в точках с координатами x1, x2,…, xn, находится по формулеФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив её в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры.Пусть вдоль стержня – отрезка [a; b] оси Ох – распределена масса плотностью ρ(х), где ρ(х) – непрерывная функция. Покажем, что координата центра масс Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах равна Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.Разобьем отрезок [a; b] на n равных частей точками a=x0<x1<…<xn=b. На каждом из n этих отрезков плотность можно считать при больших n постоянной и примерно равной ρ(xk-1) на k-м отрезке (в силу непрерывности ρ(х) ). Тогда масса k-отрезка примерно равна Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, а масса всего стержня равна . Считая каждый из n маленьких отрезков материальной точкой массы mk, помещенной в точке xk-1, получим, что координата центра масс приближенно находится так:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Теперь осталось заметить, что при Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах числитель стремится к интегралу Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, а знаменатель (выражающий массу всего стержня) – к интегралу Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. [8]

Аналогично можно вывести формулу для нахождения работы силы.

II. Метод дифференциалов.

Электрический заряд.

Представим себе переменный ток, текущий по проводнику. Как вычислить заряд q, переносимый за интервал времени [a; b] через сечение проводника? Если бы сила тока I не менялась со временем, то изменение заряда q равнялось бы произведению I(b-a). Пусть задан закон изменения I=I(t) в зависимости от времени. Тогда на малом интервале времени [t; t+dt] можно считать силу тока постоянной и равной I(t). Тогда дифференциал заряда запишем так: dq=I(t)dt. Отсюда получаем, что весь заряд, переносимый за

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: