Xreferat.com » Рефераты по педагогике » Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах

интервал времени [a; b] можно записать в виде интеграла:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Аналогично выводятся и формулы для нахождения работы силы, перемещения точки, вычисления массы стержня, электрического заряда и давления воды на плотину. [2]

III. Рассмотрение практической задачи.

Работа силы.

Вычислить работу силы F при сжатии пружины на 0,08 м, если для её сжатия на 0,01 м требуется сила 10 Н. [1]

По закону Гука сила F пропорциональна растяжению или сжатию пружины, т. е. F=kx, где x – величина растяжения или сжатия (в м), k – постоянная. Из условия задачи находим k. Так как при х=0,01 м и сила F=10 Н, то Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. Следовательно, F(x)=kx=1000x.

Работа силы F(x) при перемещении тела из точки а в точку b равна

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Используя данные задачи, получаем:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах (Дж).

Рассмотрим достоинства и недостатки каждого из выше перечисленных методов.

Если учащиеся знакомились с понятием интеграла как предела интегральных сумм, то первый метод изучения приложений будет наиболее логичным и понятным. Если же понятие интеграла вводилось с помощью приращения первообразной, то использование данного метода получения формул стоит обосновать для учащихся и рассмотреть довольно подробно с введением понятия интегральных сумм, что довольно громоздко, но необходимо.

Достоинством второго метода при введении понятия интеграла с помощью приращения первообразной состоит в том, что он не такой громоздкий, как первый и с его помощью можно вывести много формул даже в рамках урока. Однако, в таком случае вычисление интеграла с помощью интегральных сумм остается за рамками изучения, что является не совсем корректным. При введении понятия интеграла с помощью интегральных сумм рассмотрение данного метода при изучении приложений необходимо пояснить.

Третий метод применим только в классах курса А. Здесь нет необходимости выводить формулы, достаточно дать общее представление.

Подводя итоги первой главы можно сделать следующие выводы.

Как выяснилось, существуют различные методы введения понятия интеграла и изучения его приложений и выбор одного из них – задача учителя. Но для полноценного изучения интеграла, для возможности предоставить учащимся более полноценную, наиболее обоснованную и понятную картину рассматриваемого явления учителю необходимо использовать различные методы в совокупности, различную литературу, т.к. в рамках школьного учебника и методов, которые каждый из них предлагает учителю, это невозможно. В каждом из выше рассмотренных учебников есть свои недостатки при введении понятия и изучении его приложений, которые описаны выше. В некоторых из них не рассматриваются ни свойства, ни техника интегрирования.

Проанализировав школьные учебники относительно использования физических моделей при изучении понятия интеграла, можно сделать вывод, что при изучении свойств и техники интегрирования ни один автор не использует физических задач, а при введении понятия интеграла авторы ограничиваются использованием следующих физических моделей: вычисление работы переменной силы, перемещения точки, массы стержня переменной плотности. На самом деле существует огромный запас задач из других разделов физики, которые можно использовать при введении понятия интеграла, а при изучении его свойств обосновывать их с помощью физических задач, при рассмотрении техники интегрирования демонстрировать методы на примерах всё тех же физических задач. Таким образом, все понятия, свойства, методы не только будут предоставлены учащимся как факты, но будут и обоснованы, и продемонстрированы, и покажут межпредметную связь физики и математики.

Глава 2

Физические модели при изучении темы «Интеграл»


2.1. Введение понятия интеграла с помощью физических моделей


После анализа достоинств и недостатков школьных учебников математики относительно темы «Интеграл», после ознакомления с некоторыми учебниками физики и, учитывая психолого-педагогические и методические основы изучения интеграла, мною была разработана методика изучения понятия интеграла с использованием физических моделей в школьном курсе математики, представленная в данной главе.

Нижеследующая методика введения понятия интеграла с помощью задач физики разрабатывалась мной на основе следующего факта.

Физические величины, вычисляемые с помощью интеграла, можно разделить на два типа, в зависимости от того, как они естественно определяются. К первому типу относятся «первичные» величины (длина пути, масса, количество электричества, количество теплоты и т. п.), т. е. такие величины, для которых другие, связанные с ними («вторичные») величины (соответственно скорость, линейная плотность, величина тока, удельная теплоемкость и т. п.) определяются как производные этих величин. Ко второму типу относятся такие, которые определяются естественным образом как интегралы от «первичных» по отношению к ним величин (например, площадь, работа). Для первого типа величин интегральная формула для их вычисления может и должна быть доказана, опираясь на известное из предыдущего материала определение «вторичной» величины как производной от данной «первичной». Для второго типа интегральная формула появляется по определению.[5]

В соответствии с этим рассмотрим описанные в первой главе подходы на конкретных физических моделях из разных разделов физики (механика, электродинамика, кинематика и др.), уделив особое внимание второму подходу, поскольку в школьных учебниках он практически не используется.

При введении понятия интеграла как предела интегральных сумм довольно наглядным и понятным для учащихся является пример задачи о давлении жидкости на стенку.

Задача. Бассейн высоты H наполнен водой. Вычислить давление воды на прямоугольную стенку бассейна с основанием прямоугольника, равным а.

Разделим высоту Н на n равных частей (Δh). Стенка разделится на «элементы». Так как кубометр воды весит тонну, то давление столба жидкости высоты hi м, имеющего сечение 1 м2, равно hi тоннам.

Давление же воды на элемент, находящийся на глубине hi, равно произведению hi на площадь элемента: hia Δh. Обозначим произведение hia через F(hi). Тогда величина давления на всю стенку приближенно равна

Pn≈ F1(h1)Δh1+…+Fn(hn) Δhn.

Данную сумму называют интегральной суммой функции F(h) на отрезке [0; H]. При этом предполагается, что функция F(h) непрерывна на отрезке [0; H] и может принимать любые значения. Если Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах и высоты «элементов» стремятся к нулю, то точное выражение суммы равно Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. Его называют определенным интегралом от функции F(h) на отрезке [0; H] и обозначают Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Далее понятие определенного интеграла обобщается на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b].

Рассмотрим несколько задач с физическими моделями, где интеграл определяется как приращение первообразной.

1. Задача о перемещении точки.

Пусть v=v(t) скорость прямолинейного движения точки, заданная на некотором промежутке времени [t1; t2]. При этом пусть v(t)>0. Как выразится длина пути, пройденного точкой за данный промежуток времени?[5]

Обозначим координату движущейся точки в момент t через S(t). Тогда, так как движение при v>0 происходит только в положительном направлении (или иначе, т. к. S(t) – функция возрастающая, ввиду того, что Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах), то искомое расстояние будет выражаться числом S(t2)-S(t1). С другой стороны S(t) есть первообразная функции v(t) (Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах). Таким образом вычисление длины пути, пройденного точкой за данный промежуток времени, сводится к отысканию первообразной S(t) функции v(t), т. е. к интегрированию функции v(t).

Разность S(t2)-S(t1) называют интегралом от функции v(t) на отрезке [t1; t2] и обозначают так:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Импульс силы.

Пусть на тело массой m в течение времени t действует какая-то сила F(t). Найти количество движения тела при заданной зависимости силы от времени за промежуток времени [t1; t2].

Как известно из физики второй закон Ньютона в импульсном представлении выражает уравнение

ΔР=FΔt.

Произведение P=mv(t) массы на скорость называется «количеством движения». Так как скорость тела зависит от времени, то за промежуток времени [t1; t2] искомое количество движения может быть найдено так: Р(t2)-Р(t1). С другой стороны Р(t) есть первообразная функции F(t). Таким образом вычисление количества движения тела за данный промежуток времени, сводится к отысканию первообразной Р(t) функции F(t).

Разность P(t2)-P(t1) называют интегралом от функции F(t) на отрезке [t1; t2] и обозначают так:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Величина Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах называется также «импульсом силы» за время [t1; t2]. Словесная формулировка результата: изменение количества движения равно импульсу силы.

Количество электричества.

Представим себе переменный ток, текущий по проводнику. Вычислим количество электричества, протекающего за интервал времени [a; b] через сечение проводника. Если бы сила не менялась со временем, то изменение количества электричества q равнялось бы произведению I(b-a). Пусть задан закон изменения I=I(t) в зависимости от времени. Тогда количество электричества, протекающего за интервал времени [a; b], равно q(b)-q(a). С другой стороны на малом промежутке времени можно считать силу тока постоянной и равной I(t), а dq=I(t)dt, следовательно, вычисление количества электричества за данный промежуток времени, сводится к отысканию первообразной функции I(t).

Разность q(b)-q(a) называют интегралом от функции I(t) на отрезке [a; b] и обозначают так:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Вытекание воды из сосуда.

Данная задача проста и наглядна в своей постановке для учащихся.

Представим себе сосуд, из которого вытекает вода. В момент времени t поток воды вычисляется по формуле q=q(t). Найдем объем воды, вытекающей из сосуда за промежуток времени [t1; t2]. Объем воды, находящейся в сосуде, обозначим через V. Этот объем со временем меняется, т. е. V есть функция времени t.

Рассмотрим промежуток времени [t1; t2]. Очевидно, что за это время из сосуда вытечет V(t2)-V(t1) воды. С другой стороны, поток воды – это величина, характеризующая скорость изменения количества воды в сосуде, т.е. dV=q(t)dt. Следовательно, вычисление объема воды, вытекающей из сосуда за промежуток времени [t1; t2], сводится к отысканию первообразной функции q(t).

Разность V(t2)-V(t1) называют интегралом от функции q(t) на отрезке [t1; t2] и обозначают так:

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Все вышерассмотренные модели – это наиболее часто встречающиеся в школьном курсе физики законы и формулы, поэтому они не требуют от учащихся дополнительных знаний по физике, а, следовательно, удовлетворяют как принципу научности, так и принципу доступности материала.


2.2. Изучение свойств определенного интеграла с помощью физических моделей


При изучении интеграла существенным является отбор свойств, которые необходимо знать ученикам. Их должно быть достаточно для рассмотрения приложений интеграла и в то же время не должны вводиться свойства, без которых можно обойтись в дальнейшем. Доказательство свойств при разных подходах к введению понятия интеграла может быть разным.

Ниже приведенные свойства интеграла рассматриваются на различных физических моделях.

10. Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Рассмотрим доказательство данного свойства на задаче о перемещении точки.

При введении интеграла рассматривается случай, когда нижний предел интегрирования меньше верхнего. Но определенный интеграл можно обобщить и на случай, когда верхний предел меньше нижнего. В этом случае обратимся к определению интеграла как суммы. Разбивая отрезок от [a; b] промежуточными значениями t1, t2, …,tn-1, убедимся, что все Δt теперь отрицательны. Легко убедиться, что

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, (1)

так как при любом разбиении отрезка [a; b] соответствующие суммы будут отличаться знаками всех Δt во всех слагаемых. [7]

20. Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Докажем свойство на примере задачи о перемещении точки.

Существенное свойство интеграла состоит в том, что область интегрирования можно разбить на части: путь, пройденный за время от а (начала) до b (конца), можно представить

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классахФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классахФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классахФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классахФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классахФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классахФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классахФизические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах


как сумму пути, пройденного за время от a до c (промежуточного момента) и от c до b

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. (2)

При помощи соотношения (1) можно распространить формулу (2) и на случай, когда с не лежит внутри промежутка [a; b].

Пусть c>b>a. Тогда очевидно

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Перенесем последнее слагаемое в левую часть и воспользуемся (1)

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. (3)

Таким образом, получили равенство (3), в точности совпадающее с (2).

Аналогично можно рассмотреть случаи другого расположения чисел a, c, b (их всего шесть вариантов). Учащиеся легко могут самостоятельно убедиться, что формула (2) оказывается верной во всех этих случаях, т. е. независимо от взаимного расположения чисел a, c, b.[7]

Выведенное свойство называется свойством аддитивности интеграла.

30. Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Рассмотрим доказательство этих свойств на примерах задачи о работе переменной силы и задачи о давлении жидкости на стенку.

Пусть к материальной точке, движущейся по оси х, приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону. Под действием этих сил материальная точка переместилась из точки а в точку b, при этом работа каждой силы на этом отрезке вычисляется по формулам: Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах и Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. Тогда общая работа, совершенная обеими силами равна

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. (4)

С другой стороны, если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону, то их равнодействующая F(x) находится по формуле F(x)= F1(x)+F2(x). Работа этой силы равна

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. (5)

В силу равенства левых частей в формулах (4) и (5), получаем равенство правых, т. е.

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Нетрудно показать, что данное свойство выполняется для любого конечного числа сил, действующих на точку и направленных по одной прямой в одну сторону. Это свойство показывает, что интеграл суммы нескольких слагаемых разбивается на сумму интегралов отдельных слагаемых.

Если же к материальной точке, движущейся по оси х, приложены две силы F1(x) и F2(x), направленные по одной прямой, но в противоположную сторону, то их равнодействующая F(x) при F1(x)>F2(x) находится по формуле F(x)= F1(x)-F2(x). Тогда верно следующее равенство

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Ранее был приведен метод введения интеграла, основанный на рассмотрении задачи о давлении жидкости на прямоугольную стенку бассейна с основанием а, в результате решения которой получена формула

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах, (6)

где а – величина постоянная, равная ширине стенки бассейна.

Разделим прямоугольную стенку бассейна на а прямоугольников с основанием, равным единице. Тогда весь бассейн также разделится на а равных частей, при чем давление на прямоугольную стенку с основанием, равным единице в каждой части будет вычисляться по формуле Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. Учитывая, что во всех частях давление одно и то же и всего частей а, то общее давление равно

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах. (7)

В силу равенства левых частей в формулах (6) и (7), получаем равенство правых, т. е.

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Данное равенство можно обобщить на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b], т. е.

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах

Выведенные формулы в пунктах 3.1 и 3.2 называются свойствами линейности интеграла.

40. Если Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах на отрезке [a; b], то Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах.

Докажем данное свойство с помощью задачи о массе стержня.

При введении понятия интеграла с помощью задачи о вычислении массы неоднородного стержня была получена формула

Физические модели
    <div class=

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Подробнее

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: