Xreferat.com » Рефераты по промышленности и производству » Процесс переработки нефти на ЗАО "Павлодарский НПЗ"

Процесс переработки нефти на ЗАО "Павлодарский НПЗ"

– нестабильная головка – сырье секции 400,

Фр. 62 – 180°С – прямогонный бензин – сырье секции 200,

Фр.140 – 230°С – керосиновая фракция – сырье секции 300/2,

фр.230 – 350°С – дизельная фракция – сырье секции 300/1,

фр. выше 350°С – мазут – сырье вакуумных блоков КТ-1, УПБ.

Основное оборудование С.100 – блок ЭЛОУ: электродегидраторы; блок АТ: ректификационные колонны – К-101-отбензинивающая, К-102-атмосферная, К-103-отпарная, К-104-стабилизационная; трубчатые печи – П-101,101/1,102, теплообменное и насосное оборудование.

Секция 200. Секция 200 установки ЛК-6У – каталитический риформинг, предназначена для получения высокооктановых компонентов автомобильных бензинов и технического водорода в результате каталитических превращений широкой бензиновой фракции 62-180°С секции 100 установки ЛК-6У.

Водородсодержащий газ (технический водород) используется далее в процессах гидроочистки топлив.

Процесс риформинга осуществляется при последовательном прохождении сырья через три реактора, заполненных катализатором: Р-202, Р-203 – полиметаллический катализатор RG-482 фирмы «Аксенс», Р-204 – полиметаллический катализатор RG-582 этой же фирмы.

Для улучшения качества сырья каталитического риформинга в состав секции 200 включен блок гидроочистки, позволяющий снижать содержание сернистых, азотистых, кислородсодержащих, металлоорганических и непредельных соединений в сырье. В реакторе предварительной гидроочистки Р-201 используется катализатор KF-752-3Q фирмы Aкзо-Нобель.

Секция 300/1 установки ЛК-6У-гидроочистка дизельного топлива, предназначена для очистки фракции 180-350°С от сернистых, азотистых и других вредных соединений.

В процессе гидроочистки, основанном на реакции умеренной гидрогенизации, органические соединения серы, кислорода и азота превращаются в присутствии водорода и катализатора в углеводороды с выделением сероводорода, воды и аммиака.

Готовой продукцией секции являются:

-гидроочищенное дизельное топливо;

-бензин- отгон, используемый в качестве компонента сырья секции 100, 200;

-углеводородный газ используется в качестве топлива.

Секция 300/2 –гидроочистка керосина предназначена для очистки прямогонной фракции 140-230°С от сернистых, азотистых и других вредных соединений.

В процессе гидроочистки соединения серы, кислорода и азота превращаются в присутствии водорода и катализатора в углеводороды с выделением сероводорода воды и аммиака.

Готовой продукцией секции являются:

гидроочищенная фракция 140-230°С;

бензин - отгон, используемый в качестве компонента сырья секции 100,200;

углеводородный газ используется в качестве топлива.

Секция 400 установки ЛК-6У-установка газофракционирования предельных углеводородов, предназначена для получения сжиженных углеводородных газов коммунально-бытового и технического назначения, сырья для нефтехимических производств и компонентов автомобильных бензинов путем переработки нестабильных головок первичной переработки нефти и каталитического риформинга.

Предусмотрено два варианта работы установки:

I вариант – получение пропановой, изобутановой фракции, фракции нормального бутана, фракции С5 и выше;

II вариант – получение бытового газа, бутана технического, изопентана, фракции С5 и выше.


4.1.2 Установка КТ-1

Установка КТ-1 введена в эксплуатацию в 1983 году. Представляет собой комплекс по глубокой переработке мазута, состоит из следующих секций:

- Секция 001 – вакуумная перегонка мазута, мощностью 4000 тыс.тн/год;

- Cекция 100 – гидроочистка вакуумного газойля, мощностью 2400 тыс.тн/год;

- Секция 200 – каталитический крекинг, мощностью 2000 тыс.тн/год;

- Секция 300 – абсорбция и газофракционирование, мощностью 1250 тыс.тн/год.

Секция 001 предназначена для переработки мазута методом ректификации под вакуумом с целью получения:

вакуумного дистиллята-сырья гидроочистки вакуумного газойля (С-100);

гудрона – сырья установки замедленного коксования или блока висбрекинга;

легкой дизельной фракции–сырья гидроочистки секции 100;

затемненного продукта-компонента котельного топлива.

Мазут с ЛК-6у поступает на топливную станцию в резервуары Р-3,6, предусмотрена также подача мазута с ЛК-6у минуя топливную станцию на комплекс КТ-1 секцию 001.

Основное оборудование секции: вакуумная колонна К-601/1, трубчатые печи П-601/1,2, теплообменное и насосное оборудование.

Секция 100-установка гидроочистки вакуумного дистиллята, предназначена для предварительного гидрогенизационного облагораживания сырья каталитического крекинга с целью снижения содержания сернистых, азотистых, кислородсодержащих, металлоорганических соединений и полициклической ароматики с одновременным снижением его коксуемости, а также очистки газов раствором моноэтаноламина от сероводорода.

Процесс гидроочистки сырья каталитического крекинга осуществляется по традиционной для всех гидроочисток технологии и включает:

реакторный блок, где осуществляется собственно процесс гидроочистки и отделение гидрогенизата от циркулирующего водородсодержащего и углеводородных газов, в качестве катализаторов гидроочистки используются катализаторы фирмы Грейс-Девисон;

отделение ректификации (стабилизации) гидрогенизата, где происходит последующее разделение гидрогенизата на бензин, дизельное топливо и гидроочищенный вакуумный дистиллят;

блок печей, включающий печи для нагрева газосырьевой смеси перед входом в реакторы и нестабильного гидрогенизата для последующего разделения в атмосферной колонне;

блок моноэтаноламиновой очистки газов, где очистке от сероводорода подвергаются циркуляционный водородсодержащий газ, сухой газ каталитического крекинга, жирный газ висбрекинга, пропан-пропиленовая фракция и углеводородный газ секции-100;

блок защелачивания бутан-бутиленовой фракции, где при неработающем реакторном блоке колонна очистки углеводородного газа висбрекинга используется в схеме очистки бутан-бутиленовой фракции щелочью.

Получаемые продукты:

гидроочищенный вакуумный газойль;

нестабильный бензин (фракция н.к.-180°С);

дизельное топливо (фракция 180-350°С);

пропан-пропиленовая фракция;

компоненты топливного газа технологических печей;

сероводород в растворе насыщенного МЭА.

Основное оборудование секции: реактора Р-101/1,2, стабилизационная колонна К-101, отпарная колонна К-108, абсорберы К-102,103,105, экстракторы К-104, 106, теплообменная аппаратура, сепараторы, насосно-компрессорное оборудование.

Секция 200, входящая в состав комбинированной установки КТ-1, включает в себя реакторный блок каталитического крекинга, блок ректификации и очистки технологического конденсата, воздушную компрессорную.

В основу реакторного блока принята схема каталитического крекинга по типу установок Г-43-107 с прямоточным лифт-реактором с псевдосжиженным слоем микросферического катализатора. В качестве катализатора крекинга в настоящее время используется катализатор «Спектра-985р» (фирмы Грейс Девисон, Германия).

Процесс каталитического крекинга гидроочищенного сырья является целевым в наборе процессов установки КТ-1 и позволяет получать следующие продукты:

жирный газ и нестабильный бензин, используемые в качестве сырья на секции абсорбции и газофракционирования с целью получения пропан-пропиленовой, бутан-бутиленовой фракции, сухого углеводородного газа, высокооктанового компонента автобензина ( фр.н.к.-205°С);

легкий газойль (фр.195-270°С), используемый в качестве компонента дизельного топлива или товарного печного топлива, а также для получения “Универсина-C ”;

фракция 270-420° С, используемая в качестве компонента сырья для производства технического углерода или компонента котельного топлива;

фракция >420°С, используемая в качестве компонента сырья для производства технического углерода, игольчатого кокса или компонента котельного топлива.

Разделение данных продуктов крекинга осуществляется по традиционной схеме для всех моделей каталитического крекинга и осуществляется в ректификационной колонне К-201.

Реконструированный в составе секции блок очистки технологического конденсата позволяет довести до нормы качественный состав конденсата перед сбросом его на очистные сооружения завода.

Основное оборудование секции: реактор Р-201, регенератор Р-202, ректификационная колонна К-201, отпарная колонна К-202/1,2, десорбер К-203, теплообменное и емкостное оборудование, насосно-компрессорное оборудование.

Секция 300. Секция абсорбции и газофракционирования предназначена для абсорбции, стабилизации и фракционирования жирного газа и нестабильного бензина, поступающих с секции каталитического крекинга.

Секция абсорбции и газофракционирования состоит из следующих блоков:

блока абсорбции, где осуществляется деэтанизация и абсорбция жирного газа и нестабильного бензина; процесс абсорбции ведется при пониженных температурах с применением водяного и воздушного охлаждения, что обеспечивает извлечение фракции С3 и выше не менее 80% весовых от потенциала;

блока стабилизации и разделения газовой “головки”, где осуществляется стабилизация нестабильного бензина - насыщенного абсорбента блока абсорбции с получением стабильного бензина и “головки” стабилизации, которая разделяется на пропан-пропиленовую и бутан-бутиленовую фракции.

Основное оборудование секции: фракционирующий абсорбер К-303, стабилизатор бензина К-304, ректификационные колонны К-305,306, теплообменное и емкостное оборудование, насосно-компрессорное оборудование.


4.1.3 Установка производства битумов

Установка производства битумов введена в эксплуатацию в 1979 году, состоит из блока вакуумной перегонки мазута и битумного блока, мощностью по битуму 500 тыс. тн/год, запроектирована «Ростгипронефтехимом».

Основное назначение блока вакуумной перегонки мазута - получение гудрона фр.>500° С - сырья для производства битумов методом окисления кислородом воздуха в окислительных колоннах. Боковые погоны фр.< 350° С и фр.350 - 450°С выводятся с установки как компоненты сырья секции гидроочистки вакуумного газойля комплекса КТ-1. Фр.450-500 ° С используется как компонент сырья установки каталитического крекинга. Смесь указанных фракций и каждая фракция в отдельности может использоваться как компонент котельного топлива в схеме завода.

Для повышения термической стабильности продуктов и улучшения ректификации мазута процесс проводится под вакуумом (остаточное давление 35-100 мм.рт.ст) с подачей перегретого пара в нижнюю часть вакуумной колонны К-1. Для турбулизации потоков предусмотрена подача пара в сырьевой змеевик.

Битумный блок предназначен для получения непосредственно битумов: строительного, дорожного, кровельного, изоляционного.

В основу технологического процесса положен метод непрерывного прямого окисления гудрона ( фр. > 500°С) в аппаратах колонного типа до заданной марки битума.

Реактор-колонна представляет собой вертикальный цилиндрический аппарат с расширенной верхней частью, оборудованный маточником для подачи воздуха. Маточник предназначен для более равномерного распределения воздуха по сечению колонны и для улучшения контакта с окисляемым сырьем.

Расширение верхней части колонны выполнено для уменьшения нагрузки по газам и улучшения сепарации. При продувке воздухом подогретого сырья кислород окисляет высококипящие фракции, процесс окисления сопровождается выделением тепла.

Дорожный битум вывозится по железной дороге бункерами и, битумовозами, кровельный вывозится самовывозом битумовозами, строительный битум затаривается в мешки бесподдонным методом погрузчиками и отгружаются в вагоны или вывозятся самовывозом.

Технологическое оборудование:

Вакуумная колонна-высота 29200мм,17 тарелок, из них 7 клапанных,7 ситчатых, 3 глухих.

Окислительные колонны К-2-6 высотой 32426мм.

Установка оборудована насосами тип НК-20 шт., поршневыми насосами тип ПДГ-3 шт., поршневые электроприводные тип НР-2шт.

Установка оборудована котлом-утилизатором марка Г-345П.


4.1.4 Установка производства серы

Установка производства серы, мощностью 20тыс.тн.серы/год, запроектирована институтом «Гипрогазоочистка» г.Москва и состоит из двух блоков: блока регенерации водного раствора моноэтаноламина и блока получения серы. Блок регенерации водного раствора моноэтаноламина введен в эксплуатацию в 1978году, блок производства серы - в 1979году.

Установка производства серы с блоком регенерации раствора МЭА предназначена для регенерации водного раствора МЭА и получения элементарной серы из сероводорода, выделившегося при регенерации.

Регенерация водного раствора МЭА производится кипячением раствора с помощью «глухого» пара в тарельчатых десорберах. Производительность блока регенерации –380м3/час раствора МЭА.

Для получения элементарной серы применен 3-х ступенчатый окислительный процесс с первой термической ступенью и двумя последующими каталитическими ступенями (метод Клауса). Термическая стадия оборудована котлами-утилизаторами типа Г-105/300.Ц. Каталитические стадии оборудованы топками, конверторами, конденсаторами-генераторами типа Г-420.


4.1.5 Установка замедленного коксования

Установка замедленного коксования типа 21-10/9 предназначена для получения нефтяного кокса. Мощность по сырью- 600 тыс.тн/год, по коксу 120 тыс.тн/год, введена в эксплуатацию в 1986 году.

Кроме кокса на установке вырабатываются:

жирный газ коксования, который используется для топливных нужд завода;

компонент автомобильного бензина;

легкий и тяжелый газойль коксования вовлекаются как компонент сырья С-100 КТ-1.

Сырьем установки служит гудрон фр.>500°С с вакуумных блоков установок КТ-1 или битумной.

В основу технологического процесса получения кокса заложен метод термического крекинга гудрона в коксовых камерах Р-1, Р-2, Р-3, Р-4 при температуре 460-490°С с последующей ректификацией газов коксования в колонне К-1.

На установке применяется гидравлическая выгрузка кокса из коксовых камер в две стадии: бурение центрального ствола и резка.

Схема установки принята двухпоточной по блоку коксовых камер и однопоточной по ректификации, системе обработки и транспорта кокса. Установка работает непрерывно по блоку ректификации, заполнение камер коксом и выгрузка кокса из коксовых камер производится периодически.


5. Подготовка нефти к переработке


Добываемая на промыслах нефть, помимо растворенных в ней газов, содержит некоторое количество примесей – частицы песка, глины, кристаллы солей и воду. Содержание твердых частиц в неочищенной нефти обычно не превышает 1,5%, а количество воды может изменяться в широких пределах. С увеличением продолжительности эксплуатации месторождения возрастает обводнение нефтяного пласта и содержание воды в добываемой нефти. В некоторых старых скважинах жидкость, получаемая из пласта, содержит 90% воды. В нефти, поступающей на переработку, должно быть не более 0,3% воды. Присутствие в нефти механических примесей затрудняет ее транспортирование по трубопроводам и переработку, вызывает эрозию внутренних поверхностей труб нефтепроводов и образование отложений в теплообменниках, печах и холодильниках, что приводит к снижению коэффициента теплопередачи, повышает зольность остатков от перегонки нефти (мазутов и гудронов), содействует образованию стойких эмульсий. Кроме того, в процессе добычи и транспортировки нефти происходит весомая потеря легких компонентов нефти (метан, этан, пропан и т.д., включая бензиновые фракции) – примерно до 5% от фракций, выкипающих до 100°С. С целью понижения затрат на переработку нефти, вызванных потерей легких компонентов и чрезмерный износ нефтепроводов и аппаратов переработки, добываемая нефть подвергается предварительной обработке. Для сокращения потерь легких компонентов осуществляют стабилизацию нефти, а также применяют специальные герметические резервуары хранения нефти. От основного количества воды и твердых частиц нефть освобождают путем отстаивания в резервуарах. Разрушение нефтяных эмульсий осуществляют механическими, химическими и электрическими способами. Важным моментом является процесс сортировки и смешения нефти.


5.1 Сокращение потерь при транспортировке и хранении нефти,

стабилизация нефти


Потери легких компонентов в основном происходят в резервуарах при так называемых «больших и малых дыханиях» — выброс воздуха, содержащего испарения нефти, при заполнении пустого резервуара или незначительные по объему выбросы, вызываемые колебаниями уровня в резервуаре и изменениями плотности при перепаде температур. Устранение потерь дыхания резервуаров осуществляют посредством их герметизации и применения дышащих крышек, дышащих баллонов, и др. Суть применяемых дышащих аппаратов заключается в их способности изменять объем под давлением вытесняемой из резервуара воздушной смеси. Таким образом дыхательные аппараты увеличивают или уменьшают объем резервуара сохраняя на время вытесненную из резервуара воздушную смесь. Такие аппараты применяют для сокращений потерь при малых дыханиях резервуаров. Для сокращения потерь от испарения и улучшения условий транспортирования нефть подвергают стабилизации, т.е. удалению низкомолекулярных углеродов (метана, этана и пропана), а также сероводорода на промыслах или на головных перекачивающих станциях нефтепроводов.


5.2 Сортировка нефти


Различные нефти и выделенные из них соответствующие фракции отличаются друг от друга физико-химическими и товарными свойствами. Так, бензиновые фракции некоторой нефти характеризуются высокой концентрацией ароматических, нафтеновых или изопарафиновых углеводородов и поэтому имеют высокие октановые числа, тогда как бензиновые фракции других нефтей содержат в значительных количествах парафиновые углеводороды и имеют очень низкие октановые числа. Важное значение в дальнейшей технологической переработке нефти имеет серность, масляничность смолистость нефти и др. Таким образом, существует необходимость отслеживания качественной характеристики нефти в процессе транспортировки, сбора и хранения с целью недопущения потери ценных свойств компонентов нефти. Однако раздельные сбор, хранение и перекачка нефти в пределах месторождения с большим числом нефтяных пластов весомо осложняет нефтепромысловое хозяйство и требует больших капиталовложений. Поэтому близкие по физико-химическим и товарным свойствам нефти на промыслах смешивают и направляют на совместную переработку.


5.3 Выбор направления переработки нефти


Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и настоящей потребности хозяйств в товарных нефтепродуктах. Различают три основных варианта переработки нефти:

топливный,

топливно-масляный,

нефтехимический.

По топливному варианту нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом участвующих технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму. Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка — гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы — каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. В этом случае для выработки высококачественных масел требуется минимальное количество технологических установок. Масляные фракции (фракции, выкипающие выше 350°С), выделенные из нефти, сначала подвергается очистке избирательными растворителями: фенолом или фурфуролом, чтобы удалить часть смолистых веществ и низкоиндексные углеводороды, затем проводят депарафинизацию при помощи смесей метилэтилкетона или ацетона с толуолом для понижения температуры застывания масла. Заканчивается обработка масляных фракций доочисткой отбеливающими глинами. Последние технологии получения масел используют процессы гидроочистки взамен селективной очистки и обработки отбеливающими гланами. Таким способом получают дистиллятные масла (легкие и средние индустриальные, автотракторные и др.). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуется деасфальт и асфальт. Деасфальт подвергается дальнейшей обработке, а асфальт перерабатывают в битум или кокс.

Нефтехимический вариант переработки нефти по сравнению с предыдущими вариантами отличается большим ассортиментом нефтехимической продукции и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями. Нефтеперерабатывающие заводы, строительство которых проводилось в последние два десятилетия, направлены на нефтехимическую переработку. Нефтехимический вариант переработки нефти представляет собой сложное сочетание предприятий, на которых помимо выработки высококачественных моторных топлив и масел не только проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафиновых углеводородов и др.) для тяжелого органического синтеза, но и осуществляются сложнейшие физико-химические процессы, связанные с многотоннажным производством азотных удобрений, синтетического каучука, пластмасс, синтетических волокон, моющих веществ, жирных кислот, фенола, ацетона, спиртов, эфиров и многих других химикалий.


5.4 Очистка нефти от примеси


От основного количества воды и твердых частиц нефти освобождают путем отстаивания в резервуарах на холоду или при подогреве. Окончательно их обезвоживают и обессоливают на специальных установках. Однако вода и нефть часто образуют трудно разделимую эмульсию, что сильно замедляет или даже препятствует обезвоживанию нефти. В общем случае эмульсия есть система из двух взаимно нерастворимых жидкостей, в которых одна распределена в другой во взвешенном состоянии в виде мельчайших капель. Существуют два типа нефтяных эмульсий: нефть в воде, или гидрофильная эмульсия, и вода в нефти, или гидрофобная эмульсия. Чаще встречается гидрофобный тип нефтяных эмульсий. Образованию стойкой эмульсии предшествуют, понижение поверхностного натяжения на границе раздела фаз и создание вокруг частиц дисперсной фазы прочного адсорбционного слоя. Такие слои образуют третьи вещества — эмульгаторы. К гидрофильным эмульгаторам относятся щелочные мыла, желатин, крахмал. Гидрофобными являются хорошо растворимые в нефтепродуктах щелочноземельные соли органических кислот, смолы, а также мелкодисперсные частицы сажи, глины, окислов металлов и т.п., легче смачиваемые нефтью, чем водой. Существуют три метода разрушения нефтяных эмульсий:

механический: отстаивание — применяется к свежим, легко разрешимым эмульсиям. Расслаивание воды и нефти происходит вследствие разности плотностей компонентов эмульсии. Процесс ускоряется нагреванием до 120-160°С под давлением

8-15 а.т.м в течение 2-3 ч, не допуская испарения воды. центрифугирование — отделение механических примесей нефти под воздействием центробежных сил. В промышленности применяется редко, обычно сериями центрифуг с числом оборотов от 3500 до 50000 в мин., при производительности 15 — 45 м3/ч каждая.

химический: разрушение эмульсий достигается путем применения поверхностно-активных веществ — деэмульгаторов. Разрушение достигается

а) адсорбционным вытеснением действующего эмульгатора веществом с большей поверхностной активностью,

б) образованием эмульсий противоположного типа

в) растворением (разрушением) адсорбционной пленки в результате ее химической реакции с вводимым в систему деэмульгатором.

Химический метод применяется чаще механического, обычно в сочетании с электрическим.

электрический: при попадании нефтяной эмульсии в переменное электрическое поле частицы воды, сильнее реагирующие на поле чем нефть, начинают колебаться, сталкиваясь друг с другом, что приводит к их объединению, укрупнению и более быстрому расслоению с нефтью. Установки, называемые электродегидраторами (ЭЛОУ — электроочистительные установки), с рабочим напряжением до 33000В при давлении

8-10 ат, применяют группами по 6 — 8 шт. с производительностью 250 — 500 т нефти в сутки каждая. В сочетании с химическим методом этот метод имеет наибольшее распространение в промышленной нефтепереработке.


6. Принципы первичной переработки нефти


Нефть представляет собой сложную смесь парафиновых, нафтеновых и ароматических углеводов, различных по молекулярному весу и температуре кипения. Кроме того, в нефти содержатся сернистые, кислородные и азотистые органические соединения. Для производства многочисленных продуктов различного назначения и со специфическими свойствами применяют методы разделения нефти на фракции и группы углеводородов, а также изменения ее химического состава. Различают первичные и вторичные методы переработки нефти:

к первичным относят процессы разделения нефти на фракции, когда используются ее потенциальные возможности по ассортименту, количеству и качеству получаемых продуктов и полупродуктов — перегонка нефти;

ко вторичным относят процессы деструктивной переработки нефти и очистки нефтепродуктов, предназначенные для изменения ее химического состава путем термического и каталитического воздействия.

При помощи этих методов удается получить нефтепродукты заданного качества и в больших количествах, чем при прямой перегонке нефти. Различают перегонку с однократным, многократным и постепенным испарением. При перегонке с однократным испарением нефть нагревают до определенной температуры и отбирают все фракции, перешедшие в паровую фазу. Перегонка нефти с многократным испарением производится с поэтапным нагреванием нефти, и отбиранием на каждом этапе фракций нефти с соответствующей температурой перехода в паровую фазу. Перегонку нефти с постепенным испарением в основном применяют в лабораторной практике для получения особо точного разделения большого количества фракций. Отличается от других методов перегонки нефти низкой производительностью. Образовавшиеся в процессе перегонки нефти паровая и жидкая фазы подвергают ректификации в колоннах.


6.1 Перегонка нефти с однократным, многократным и

постепенным испарением


При перегонке с однократным испарением нефть нагревают в змеевике какого-либо подогревателя до заранее заданной температуры. По мере повышения температуры образуется все больше паров, которые находятся в равновесии с жидкой фазой, и при заданной температуре парожидкостная смесь покидает подогреватель и поступает в адиабатический испаритель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой. Температура паровой и жидкой фаз в этом случае одна и та же. Перегонка с многократным испарением состоит из двух или более однократных процессов перегонки с повышением рабочей температуры на каждом этапе. Если при каждом однократном испарении нефти происходит бесконечно малое изменение ее фазового состояния, а число однократных испарений бесконечно большое, то такая перегонка является перегонкой с постепенным испарением. Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая по сравнению с перегонкой с многократным и постепенным испарением. Если для нефтяной фракции построить кривые разгонки с однократным и многократным испарением , то окажется, что температура начала кипения фракций при однократном испарении выше, а конца кипения ниже, чем при многократном испарении . Если высокой четкости разделения фракций не требуется, то метод однократного испарения экономичнее. К тому же при максимально допустимой температуре нагрева нефти 350 — 370°С (при более высокой температуре начинается разложение углеводородов) больше продуктов переходит в паровую фазу по сравнению с многократным или постепенным испарением. Для отбора из нефти фракций, выкипающих выше 350 — 370°С, применяют вакуум или водяной пар. Использование в промышленности принципа перегонки с однократным испарением в сочетании с ректификацией паровой и жидкой фаз позволяет достигать высокой четкости разделения нефти на фракции, непрерывности процесса и экономичного расходования топлива на нагрев сырья.


6.2 Устройство и действие ректификационных колонн, их типы


Ректификация простых и сложных смесей осуществляется в колоннах периодического или непрерывного действия. Колонны периодического действия применяют на установках малой производительности при необходимости отбора большого числа фракций и высокой четкости разделения.

Классическая схема установки

Сырье поступает в перегонный куб на высоту около 2/3 его диаметра, где происходит подогрев глухим паром. В первый период работы ректификационной установки отбирают наиболее летучий компонент смеси, например бензольную головку, затем, повышая температуру перегонки, компоненты с более высокой температурой кипения (бензол, толуол и т.д.). Наиболее высококипящие компоненты смеси остаются в кубе, образовывая кубовый остаток. По окончанию процесса ректификации этот остаток охлаждают и откачивают. Куб вновь заполняется сырьем и ректификацию возобновляют. Периодичностью процесса обусловлены больший расход тепла и меньшая производительность установки.

Установка непрерывного действия лишена многих указанных недостатков. Принципиальная схема установки.

Сырье через теплообменник поступает в подогреватель и далее на разные уровни ректификационной колонны . Нижние фракции разогревают в кипятильнике и сбрасывают обратно в ректификационную колонну. При этом самая тяжелая часть выводится из кипятильника в низ колонны и вместе с жидким осадком на дальнейшую переработку тяжелых фракций. А легкие фракции сверху в конденсатор-холодильник, и далее из аккумулятора частично назад в колонну для орошения, а частично — в дальнейшую переработку легких фракций. В зависимости от числа получаемых продуктов различают простые и сложные ректификационные колонны. В первых при ректификации получают два продукта, например бензин и полумазут. Вторые предназначены для получения трех и более продуктов. Они представляют собой последовательно соединенные простые колонны, каждая из которых разделяет поступающую в нее смесь на два компонента. В каждой простой колонне имеются отгонная и концентрационная секции. Отгонная, или отпарная, секция расположена ниже ввода сырья. Тарелка, на которую подается сырье для разделения, называется тарелкой питания. Целевым продуктом отгонной секции является жидкий остаток. Концентрационная, или укрепляющая, секция расположена над тарелкой питания. Целевым продуктом этой секции являются пары ректификата. Для нормальной работы ректификационной колоны обязательны подача орошения наверх концентрационной секции колонны и ввод тепла (через кипятильник) или острого водяного пара в отгонную секцию. В зависимости от внутреннего устройства, обеспечивающего контакт между восходящими парами и нисходящей жидкостью (флегмой), ректификационные колонны делятся на насадочные, тарельчатые, роторные и др. В зависимости от давления они делятся на ректификационные колонны высокого давления, атмосферные и вакуумные. Первые применяют в процессах стабилизации нефти и бензина, газофракционирования на установках крекинга и гидрогенизации. Атмосферные и вакуумные ректификационные колоны в основном применяют при перегонке нефти, остаточных нефтепродуктов и дистилляторов. Для равномерного распределения паров и жидкости в насадочных колоннах в качестве насадки применяют шары, призмы, пирамиды, цилиндры из различных материалов (обычно из прессованной угольной пыли) с наружным диаметром от 6 до 70 мм и отношением площади поверхности к объему от 500. Насадку помещают насыпом на специальные тарелки с отверстиями для прохождения паров и стекания флегмы. Целью применения насадки является повышение площади соприкосновения флегмы и паров для взаимного обогащения. Для правильной работы насадочной колонны очень важно равномерное распределение стекающей флегмы и паров по всему поперечному сечению колонны. Этому благоприятствует однородность тела насадки, максимально возможная скорость восходящего потока паров, равномерно распределенные слои насадки и строгая вертикальность колонны. На практике достигнутое вначале равномерное распределение паров и флегмы нарушается, т. к. пар стремится оттеснить жидкость к стенкам колонны и перемещаться через центр насадки. В связи с этим насадка и разбивается на несколько слоев, а тарелки, на которых размещается насадка, имеют специальную конструкцию, позволяющую снова равномерно перераспределять потоки после каждого слоя насадки. Эффективность использования насадочных колонн очень высока но есть и неудобства: насадку периодически приходится изымать из колоны с целью очищения от смолистых частиц со временем покрывающих насадку и ухудшающих ее смачиваемость, к тому же применение насадочных колонн выдвигает очень жесткое требование выдержки определенного давления пара и количества поступающей флегмы. В случае падения давления пара в колонне происходит ускорение стекания флегмы и резкое уменьшение площади соприкосновения пара и жидкости. В случае превышения давления пара замедляется стекание флегмы, что приводит к ее скоплению в верхних слоях насадки и запиранию паров в нижней части колонны («захлебыванию» колонны). Это приводит к еще большему повышению давления пара в нижней части колонны, и, в критический момент, прорыв пара сквозь флегму в верхнюю часть колонны. Следствием «захлебывания» колонны также является резкое уменьшение площади соприкосновения пара и жидкости. В тарельчатых колоннах для повышения площади соприкосновения потоков пара и флегмы применяют вместо насадки большое число тарелок специальной конструкции. Флегма стекает с тарелки на тарелку по спускным трубам, причем перегородки поддерживают постоянный уровень слоя жидкости на тарелке. Этот уровень позволяет постоянно держать края колпаков погруженными во флегму. Перегородки пропускают для стока на следующую тарелку лишь избыток поступающей флегмы. Принципом действия тарельчатой колонны является взаимное обогащение паров и флегмы за счет прохождения под давлением паров снизу вверх сквозь слой флегмы на каждой тарелке. За счет того, что пар проходит флегму в виде мельчайших пузырьков площадь соприкосновения пара и жидкости очень высока. Конструкции тарелок разнообразны. Применяют сетчатые, решетчатые, каскадные, клапанные, инжекционные и комбинированные тарелки. Конструкцию тарелок выбирают исходя из конкретных технологических требований (степень четкости разделения фракций, требование к интенсивности работы, необходимость изменения внутренней конструкции колонны, частота профилактических и ремонтных работ и др.) В некоторых процессах переработки нефти (например переработка с попутным отделением воды (паров), переработка с предварительным отделением тяжелейших фракций нефти) применяют роторные колонны с высокой производительностью. Тарелки такой колонны представляют собой конические щитки с углом наклона 40°, с чередованием тарелок закрепленных к стенкам колонны и тарелок закрепленных к центральному вращающемуся валу. Таким образом вращающиеся тарелки чередуются с неподвижными. Вращение тарелок происходит от привода со скоростью 240 об/мин. Флегма спускается сверху по неподвижной тарелке и у центра переливается на нижележащую вращающуюся тарелку. Под влиянием центробежной силы флегма перемещается по вращающейся тарелке вверх до ее периферии и в виде сплошной кольцевой пленки переходит на стенки корпуса колонны и дальше — на низлежащую тарелку. Далее процесс повторяется. Пары движутся сквозь флегму противотоком. К тому же большое количество флегмы постоянно находится во взвешенном состоянии, что приводит к высокой испаряемости самой флегмы. Расстояние между тарелками всего 8 – 10 мм, что позволяет строить очень компактную колонну с высоким (свыше 85%) КПД. В колонну вводится подогретое сырье, необходимая температура которого поддерживается нагревателем . Указанная конструкция очень удобна в использовании, практически не требует ремонта и профилактических работ, долговечна и не столь чувствительна к изменениям температур и давления исходных компонентов.


6.3 Комплексы ректификационных колонн, виды их подключения


В промышленности наиболее часто применяются сложные установки ректификационных колонн, комбинирующих разные виды колонн и разные типы их подключения. Это позволяет корректировать технологический процесс для разных условий переработки нефти и получения необходимых дистиллятов. В зависимости от направления переработки нефти в процессе ректификации могут участвовать разные установки ректификационных колонн. Достигается это сменой потоков сырья и промежуточных продуктов, что требует высокой магистральности сообщений коллон и установок и возможности компактного и ресурсосберегающего перенаправления потоков. Подключение колонн возможно:

последовательное, где с каждой последующей колоны снимают более тяжелый продукт, который одновременно служит флегмой для предыдущей колонны

навесной, где к основной колонне пристроены вспомогательные, куда поступают дистилляторы отобранные с разных уровней основной колонны и проходят дополнительную очистку. Остаток вспомогательных колонн сбрасывают назад в основную. Возможно взаимное подключение вспомогательных колонн, использование выходного продукта одной вспомогательной колонны (ниже расположенной по циклу) в качестве флегмы для другой (выше расположенной по циклу) и др. Вспомогательные колонны могут также иметь различную конструкцию — использовать различный тип тарелок, различные нагревательные агенты, технологические условия (давление, температурный режим) и др.; и размещение — объединяться конструктивно в одну,

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

Похожие рефераты: