Кожухотрубный теплообменник для нагревания смеси ацетон - вода до температуры кипения
Размещено на /
Федеральное агентство по образованию РФ
Государственное образовательное учреждение
Высшего профессионального образования
«Томский политехнический университет»
Химико-технологический факультет
Кафедра ТООС
Группа З5Э31
КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК ДЛЯ НАГРЕВАНИЯ СМЕСИ
АЦЕТОН – ВОДА ДО ТЕМПЕРАТУРЫ КИПЕНИЯ
(вариант № 4)
Пояснительная записка к курсовому проекту по дисциплине
«Гидравлика и теплотехника»
Руководитель проекта
доцент Гусева Ж.А.
Исполнитель проекта
студент Кудрявцева Ю.А.
Томск 2007
Федеральное агентство по образованию РФ
Государственное образовательное учреждение
Высшего профессионального образования
«Томский политехнический университет»
Задание №4
на расчетную индивидуальную работу по дисциплине
“Гидравлика и теплотехника”
Выдано студенту: Кудрявцевой Ю.А.
1.Тема: Расчет теплообменника кожухотрубчатого
2. Срок сдачи законченной работы
3. Исходные данные к заданию:
Мольная доля р-ра по нк - 40%;
Расход - 22 т/ч;
Начальная температура раствора – 22С;
Давление в трубном пространстве – 1,6 ата;
Раствор – ацетон+вода;
Давление греющего водяного пара подобрать самостоятельно.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ТЕПЛОВОЙ РАСЧЁТ
1.1 ТЕМПЕРАТУРНЫЙ РАСЧЁТ
1.2 ОПРЕДЕЛЕНИЕ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ТЕПЛОНОСИТЕЛЕЙ ПРИ СРЕДНИХ ТЕМПЕРАТУРАХ
1.3 ТЕПЛОВОЙ БАЛАНС
1.4 ОПРЕДЕЛЕНИЕ ОРИЕНТИРОВОЧНОЙ ТЕПЛОПЕРЕДАЮЩЕЙ ПОВЕРХНОСТИ И ПОДБОР НОРМАЛИЗОВАННОЙ КОНСТРУКЦИИ ПО СТАНДАРТАМ
1.5 УТОЧНЁННЫЙ РАСЧЁТ ТЕПЛОПЕРЕДАЮЩЕЙ ПОВЕРХНОСТИ
1.6 РАСЧЁТ ТЕПЛОВОЙ ИЗОЛЯЦИИ
2. ГИДРАВЛИЧЕСКИЙ РАСЧЁТ
3. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЙ РАСЧЁТ
3.1 РАСЧЁТ ТОЛЩИНЫ ОБЕЧАЙКИ
3.2 РАСЧЁТ И ПОДБОР ШТУЦЕРОВ
3.3 РАСЧЁТ ТОЛЩИНЫ ТРУБНОЙ РЕШЁТКИ
3.4 РАСЧЁТ ОПОР АППАРАТА
3.5 РАСЧЁТ И ПОДБОР ДНИЩА И КРЫШКИ АППАРАТА
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
Теплопередача – это наука о процессах распространения теплоты. Различают три различных способа переноса теплоты: теплопроводность, конвекцию и тепловое излучение. В реальных установках теплота передаётся комбинированным путём, однако вклад этих трёх составляющих в общий перенос теплоты неодинаков и определяется многими условиями: природой теплоносителя, агрегатным состоянием, температурным и гидродинамическим условиям и т.д.
В промышленности теплообмен между рабочими телами (теплоносителями) происходит в специально сконструированных аппаратах, которые называются теплообменниками. Они должны отвечать определённым общим требованиям: обладать высокой тепловой производительностью и экономичностью, обеспечивать заданные технологические условия процесса, быть просты по конструкции, компактны, обладать современным техническим и эстетическим дизайном, иметь длительный срок службы, соответствовать требованиям СНИП и ведомственным правилам Госгортехнадзора. Особые требования предъявляются к обеспечению надёжности работы аппаратов, возможности автоматического регулирования режимно-технологических параметров и аварийного отклонения.
В химической технологии теплообменные аппараты довольно широко распространены, применяются в различных производствах легкой и тяжелой промышленности. Для обеспечения того или иного технологического процесса применяются различные типы теплообменных аппаратов. Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых теплота от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку. Другую группу составляют теплообменники смешения, в которых теплота передается при непосредственном соприкосновении горячего и холодного теплоносителей.
Теплообменные аппараты классифицируются:
По назначению:
холодильники;
подогреватели;
испарители;
конденсаторы.
По конструкции:
- изготовленные из труб:
теплообменники «труба в трубе»;
оросительные теплообменники;
погружные змеевиковые;
теплообменники воздушного охлаждения;
из оребренных труб;
кожухотрубчатые теплообменники.
- с неподвижной трубной решеткой;
- с линзовым компенсатором;
- с плавающей головкой;
- с U-образными трубами.
По направлению движения теплоносителя:
прямоточные;
противоточные;
с перекрестным движением.
Кожухотрубчатые теплообменные аппараты используются для практической реализации таких процессов, как нагревание (охлаждение), конденсация и испарение. Соответственно аппараты называются теплообменниками, холодильниками, конденсаторами и испарителями.
Теплообменники предназначены для проведения процесса теплообмена между теплоносителями, которые не изменяют своего агрегатного состояния в процессе теплообмена: это газо-жидкостные и жидкостно-жидкостные аппараты для проведения процессов охлаждения и нагревания.
Холодильники предназначены для охлаждения водой или другими нетоксичными, не пожаро- и не взрывоопасными хладагентами жидких и газообразных сред. Работают, как правило, в области минусовых температур.
В соответствии с ГОСТ 15120-79, ГОСТ 15118-79 и ГОСТ 15122-79 кожухотрубчатые теплообменники и холодильники изготавливают двух типов: «Н» - с неподвижными трубными решётками и «К» - с компенсатором температурных напряжений на кожухе.
Необходимость использования компенсатора определяется предельно-допустимой разностью температур стенок труб и кожуха, равной 50єС или сравнительно большой длиной теплообменных труб (более 6м).
Конденсаторы предназначены для конденсации насыщенных паров. Обычно конденсацию осуществляют на наружной поверхности пучка труб в межтрубном пространстве. В химической промышленности для нагревания жидкостей и газов за счёт теплоты конденсации насыщенных паров чаще всего используется насыщенный водяной пар.
Испарители предназначены для проведения процессов испарения жидкости при кипении. При этом жидкость кипит в трубах, а в межтрубное пространство подаётся греющий агент. В соответствии со стандартом, кожухотрубчатые испарители в этом случае могут быть только одноходовыми и вертикального исполнения [4].
Из нашего технического задания (см. выше) следует, что нам надо подобрать кожухотрубчатый теплообменник (подогреватель) для нагревания насыщенным водяным паром смеси этанол-вода до температуры кипения.
Исходя из условий, которые приведены в техническом задании целесообразно назначить теплообменник типа ТНВ (теплообменник с неподвижными трубными решётками, вертикальный) ГОСТ 15122-79.
Т.к. эти теплообменники используются при температуре жидких и газообразных сред от -70 до +3500С от 0,6 до 16 МПа поверхность теплообмена от 1 до 5000 м2 [1].
Достоинства этого теплообменного аппарата:
а) простота конструкции;
б) непрерывная передача тепла от одного теплоносителя к другому;
в) интенсивный теплообмен.
Недостатки:
а) металлоемкость;
б) температурные деформации;
в) невозможность разборки и чистки трубного пространства.
В итоге для данного процесса необходимо подобрать теплообменник типа ТНВ по ГОСТ 15122-79 и провести для него тепловой, гидравлический и конструктивно-механический расчёты.
1. ТЕПЛОВОЙ РАСЧЁТ
1.1 ТЕМПЕРАТУРНЫЙ РАСЧЁТ
В нашем случае температура горячего теплоносителя (греющего водяного пара) не изменяется, а температура холодного теплоносителя (смеси ацетон-вода) увеличивается вдоль поверхности теплопередачи. Зная это, построим температурную диаграмму чистого противотока для нагрева смеси ацетон-вода водяным паром (рис. 1).
Рисунок 1.1 – Температурная диаграмма.
Из рис. 1 видим, что .
На рис.1.1 - температура горячего, начальная и конечная температуры холодного теплоносителей соответственно.
Т.к. (см. задание на курсовой проект), то нам необходимо найти и .
Для нахождения конечной температуры холодного теплоносителя построим диаграмму состояния смеси ацетон-вода в координатах (рис. 1.2). Для этого составим таблицу расчёта (табл. 1.1), основываясь на законах [1]:
Рауля
, (1.1)
, (1.2)
и Дальтона
, (1.3)
где - общее давление смеси; , - парциальные давления низко- и высококипящего компонентов соответственно; и - давления насыщенных паров чистых низко- и высококипящего компонентов; - мольная доля низкокипящего компонента.
При построении графика учитываем, что ацетон – низкокипящий компонент, а вода – высококипящий.
Таблица 2.1 - Расчёт для построения графика t-x [1]
t, °С |
Pа, мм рт. ст. |
Pв, мм рт. ст. |
П |
(из формул 1.1, 1.2 и 1.3) |
70 | 1200 | 200 | 1200 | 1,00 |
74 | 1300 | 250 | 0,90 | |
78 | 1500 | 290 | 0,75 | |
82 | 1650 | 370 | 0,65 | |
86 | 1850 | 440 | 0,54 | |
90 | 2000 | 500 | 0,47 | |
94 | 2200 | 600 | 0,38 | |
98 | 2500 | 680 | 0,29 | |
102 | 2650 | 720 | 0,25 | |
106 | 3200 | 900 | 0,13 | |
110 | 3600 | 1000 | 0,08 | |
114 | 4000 | 1200 | 0,00 |
Мольная доля низкокипящего компонента в смеси ацетон-вода – (см. задание на проект).
По рис. 1.2 определяем, что при .
Зададимся давлением греющего пара МПа. Тогда по [1, табл. LVII] .
Далее по рис.1.1 находим , и по формулам (1.5), (1.6) и (1.7) соответственно [2]:
, (1.5)
, (1.6)
. (1.7)
Определим средние температуры теплоносителей – и .
Т. к. , то [2]:
, (1.8)
. (1.9)
Определяем температуры стенок со стороны теплоносителей – и по формулам (1.10) и (1.11) [3]:
, (1.10)
. (1.11)
Находим температуру плёнки конденсата – по формуле (1.12) [1]:
. (1.12)
1.2 ОПРЕДЕЛЕНИЕ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ТЕПЛОНОСИТЕЛЕЙ ПРИ СРЕДНИХ ТЕМПЕРАТУРАХ
Определяем теплоёмкость холодного теплоносителя при температуре по формуле (1.13) [1]:
Дж/(кг∙К), (1.13)
где Дж/(кг∙К) и Дж/(кг∙К) – удельные теплоёмкости ацетона и воды соответственно при [1, рис. XI].
Необходимо произвести перерасчёт мольной доли в массовую, а именно по формуле [1]:
,
где г/моль – молярная масса ацетона и г/моль – молярная масса смеси.
Определяем плотность холодного теплоносителя при температуре по формуле (1.14) [1]:
кг/м3, (1.14)
где кг/м3 и кг/м3 – плотности ацетона и воды соответственно при [1, табл. IV].
Определяем динамический коэффициент вязкости холодного теплоносителя при температуре по формуле (1.15) [1]:
Па·с, (1.15)
где Па·с и Па·с – динамические коэффициенты вязкости ацетона и воды соответственно при [1, табл. IX].
Определяем коэффициент теплопроводности холодного теплоносителя при температуре по формуле (1.16) [1]:
Вт/(м·К), (1.16)
где Вт/(м·К) и Вт/(м·К) – коэффициенты теплопроводности ацетона и воды соответственно при [1, рис. X].
Определяем теплоёмкость холодного теплоносителя при температуре по формуле (1.17) [1]:
Дж/(кг∙К), (1.17)
где Дж/(кг∙К) и Дж/(кг∙К) – удельные теплоёмкости ацетона и воды соответственно при [1, рис. XI].
Определяем динамический коэффициент вязкости холодного теплоносителя при температуре по формуле (1.18) [1]:
Па·с, (1.18)
где Па·с и Па·с – динамические коэффициенты вязкости ацетона и воды соответственно при [1, табл. IX].
Определяем коэффициент теплопроводности холодного теплоносителя при температуре по формуле (1.19) [1]:
Вт/(м·К), (1.19)
где Вт/(м·К) и Вт/(м·К) – коэффициенты теплопроводности ацетона и воды соответственно при [1, рис. X].
1.3 ТЕПЛОВОЙ БАЛАНС
Составим таблицу теплового баланса для нашего процесса (табл. 1.2):
Таблица 1.2 - Таблица теплового баланса
Приход (Вт) |
Расход (Вт) |
1. С горячим теплоносителем: ; 2. С холодным теплоносителем: . |
1. С горячим теплоносителем:
Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.),
обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus.
Помогаем в публикации. Правки вносим бесплатно.
Похожие рефераты: |