Xreferat.com » Рефераты по промышленности и производству » Проверечный расчет котла БКЗ 75-39

Проверечный расчет котла БКЗ 75-39

Введение


Теплогенерирующей установкой называют совокупность устройств и механизмов для производства тепловой энергии в виде водяного пара, горячей воды или подогретого воздуха. Водяной пар используют для технологических нужд промышленности и сельском хозяйстве, для приведения в движения паровых двигателей, а также для нагрева воды, направляемой в дальнейшем на нужды отопления, вентиляции и горячего водоснабжения. Горячую воду и подогретый воздух используют для отопления производственных, общественных и жилых зданий, а также для коммунально-бытовых нужд населения. Теплогенерирующие установки предназначены для производства тепловой энергии, которыми являются: органическое и ядерное топлива, солнечная и геотермальная энергия, горючие и тепловые отходы промышленных производств.

Тепловая энергия – один из основных видов энергии используемой человеком для обеспечения необходимых условий его жизнедеятельности, как для развития и совершенствования общества, в котором он живёт, так и для создания благоприятных условий его быта. Тепловая энергия, производимая человеком из первичных источников энергии, в основном используется для получения электрической энергии на тепловых электростанциях, для технологических нужд промышленных предприятий, для отопления и горячего водоснабжения жилых и общественных зданий.

Комплексы устройств, при производящих в тепловую энергию и доставляющих её в виде водяного пара, горячей воды и подогретого воздуха потребителю, называются системами теплоснабжения. В зависимости от мощности систем и числа потребителей, получающих от них тепловую энергию, системы теплоснабжения подразделяют на централизованные и децентрализованные. Условно принято считать систему теплоснабжения централизованной, если единичная мощность включенных в неё теплогенерирующих установок равна или превышает 58 МВт. если мощность установок, производящих тепловую энергию в системе, меньше 58 МВт, то система теплоснабжения считается децентрализованной.

Автоматизация-это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Автоматизация производственных процессов приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин, дает экономию материалов, улучшает условия труда и техники безопасности.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

По уровню автоматизации теплоэнергетика занимает одно из ведущих мест среди других отраслей промышленности. Теплоэнергетические установки характеризуются непрерывностью протекающих в них процессов. При этом выработка тепловой и электрической энергии в любой момент времени должна соответствовать потреблению(нагрузке). Почти все операции на теплоэнергетических установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в тепловой энергетике.

Автоматизация параметров дает значительные преимущества:

обеспечивает уменьшение численности рабочего персонала, т.е. повышение производительности его труда,

приводит к изменению характера труда обслуживающего персонала,

увеличивает точность поддержания параметров вырабатываемого пара,

повышает безопасность труда и надежность работы оборудования,

увеличивает экономичность работы парогенератора.

Автоматизация парогенераторов включает в себя автоматическое регулирование, дистанционное управление, технологическую защиту, теплотехнический контроль, технологические блокировки и сигнализацию.

Автоматическое регулирование обеспечивает ход непрерывно протекающих процессов в парогенераторе (питание водой, горение, перегрев пара и др.)

Дистанционное управление позволяет дежурному персоналу пускать и останавливать парогенераторную установку, а так же переключать и регулировать ее механизмы на расстоянии, с пульта, где сосредоточены устройства управления.

Теплотехнический контроль за работой парогенератора и оборудования осуществляется с помощью показывающих и самопишущих приборов, действующих автоматически. Приборы ведут непрерывный контроль процессов, протекающих в парогенераторной установке, или же подключаются к объекту измерения обслуживающим персоналом или информационно-вычислительной машиной. Приборы теплотехнического контроля размещают на панелях, щитах управления по возможности удобно для наблюдения и обслуживания.

Технологические блокировки выполняют в заданной последовательности ряд операций при пусках и остановках механизмов парогенераторной установки, а так же в случаях срабатывания технологической защиты. Блокировки исключают неправильные операции при обслуживании парогенераторной установки, обеспечивают отключение в необходимой последовательности оборудования при возникновении аварии.

Устройства технологической сигнализации информируют дежурный персонал о состоянии оборудования (в работе, остановлено и т.п.), предупреждают о приближении параметра к опасному значению, сообщают о возникновении аварийного состояния парогенератора и его оборудования. Применяются звуковая и световая сигнализация.

Эксплуатация котлов должна обеспечивать надежную и эффективную выработку пара требуемых параметров и безопасные условия труда персонала. Для выполнения этих требований эксплуатация должна вестись в точном соответствии с законоположениями, правилами, нормами и руководящими указаниями, в частности, в соответствии с «Правилами устройства и безопасной эксплуатации паровых котлов» Госгортехнадзора, «Правилами технической эксплуатации электрических станций и сетей», «Правилами технической эксплуатации теплоиспользующих установок и тепловых сетей» и др.

На основе указанных материалов для каждой котельной установки должны быть составлены должностные и технологические инструкции по обслуживанию оборудования, ремонту, технике безопасности, предупреждению и ликвидации аварий и т.п. Должны быть составлены технические паспорта на оборудование, исполнительные, оперативные и технологические схемы трубопроводов различного назначения. Знание инструкций, режимных карт работы котла и указанных материалов является обязательным для персонала. Знания обслуживающего персонала должны систематически проверяться.

Эксплуатация котлов производится по производственным заданиям, составляемым по планам и графикам выработки пара, расхода топлива, расхода электроэнергии на собственные нужды, обязательно ведется оперативный журнал, в который заносятся распоряжения руководителя и записи дежурного персонала о работе оборудования, а так же ремонтную книгу, в которую записывают сведения о замеченных дефектах и мероприятиях по их устранению.

Должны вестись первичная отчетность, состоящая из суточных ведомостей по работе агрегатов и записей регистрирующих приборов и вторичная отчетность, включающая обобщенные данные по котлам за определенный период. Установка котлов в помещении должна соответствовать правилам Госгортехнадзора, требованиям техники безопасности, санитарно-техническим нормам, требованиям пожарной безопасности.

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара. Этот комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов сгорания топлива к воде и пару. Исходным носителем энергии, наличие которого необходимо для образования пар из воды, служит топливо.

Основными элементами рабочего процесса, осуществляемого в котельной установке, являются:

1) процесс горения топлива,

2) процесс теплообмена между продуктами сгорания или самим горящим топливом с водой,

3) процесс парообразования, состоящий из нагрева воды, ее испарения и нагрева полученного пара.

Во время работы в котлоагрегатах образуются два взаимодействующих друг с другом потока: поток рабочего тела и поток образующегося в топке теплоносителя.

В результате этого взаимодействия на выходе объекта получается пар заданного давления и температуры.

Одной из основных задач, возникающей при эксплуатации котельного агрегата, является обеспечение равенства между производимой и потребляемой энергией. В свою очередь процессы парообразования и передачи энергии в котлоагрегате однозначно связаны с количеством вещества в потоках рабочего тела и теплоносителя.

Горение топлива является сплошным физико-химическим процессом. Химическая сторона горения представляет собой процесс окисления его горючих элементов кислородом. проходящий при определенной температуре и сопровождающийся выделением тепла. Интенсивность горения, а так же экономичность и устойчивость процесса горения топлива зависят от способа подвода и распределения воздуха между частицами топлива. Условно принято процесс сжигания топлива делить на три стадии: зажигание, горение и дожигание. Эти стадии в основном протекают последовательно во времени, частично накладываются одна на другую.

Расчет процесса горения обычно сводится к определению количества воздуха в м3, необходимого для сгорания единицы массы или объема топлива количества и состава теплового баланса и определению температуры горения.

Значение теплоотдачи заключается в теплопередаче тепловой энергии, выделяющейся при сжигании топлива, воде, из которой необходимо получить пар, или пару, если необходимо повысить его температуру выше температуры насыщения. Процесс теплообмена в котле идет через водогазонепроницаемые теплопроводные стенки, называющиеся поверхностью нагрева. Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием. Таким образом, в котлоагрегате имеют место все виды теплопередачи: теплопроводность, конвекция и лучеиспускание. Соответственно поверхность нагрева подразделяется на конвективные и радиационные. Количество тепла, передаваемое через единицу площади нагрева в единицу времени носит название теплового напряжения поверхности нагрева. Величина напряжения ограничена, во-первых, свойствами материала поверхности нагрева, во-вторых, максимально возможной интенсивностью теплопередачи от горячего теплоносителя к поверхности, от поверхности нагрева к холодному теплоносителю.

Интенсивность коэффициента теплопередачи тем выше, чем выше разности температур теплоносителей, скорость их перемещения относительно поверхности нагрева и чем выше чистота поверхности.

Образование пара в котлоагрегатах протекает с определенной последовательностью. Уже в экранных трубах начинается образование пара. Этот процесс протекает при больших температуре и давлении. Явление испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие высокими скоростями, а следовательно, и большей по сравнению с другими молекулами кинетической энергией, преодолевая силовые воздействия соседних молекул, создающее поверхностное натяжение, вылетают в окружающее пространство. С увеличением температуры интенсивность испарения возрастает. Процесс обратный парообразованию называют конденсацией. Жидкость, образующуюся при конденсации называют конденсатом. Она используется для охлаждения поверхностей металла в пароперегревателях.

Пар, образуемый в котлоагрегате, подразделяется на насыщенный и перегретый. Насыщенный пар в свою очередь делится на сухой и влажный. Так как на теплоэлектростанциях требуется перегретый пар, то для его перегрева устанавливается пароперегреватель, в данном случае ширмовой и коньюктивный, в которых для перегрева пара используется тепло, полученное в результате сгорания топлива и отходящих газов. Полученный перегретый пар при температуре Т=540 С и давлении Р=100 атм. идет на технологические нужды.


1. Общая часть


Характеристика котла


Котельный агрегат водочный конструкции типа БКЗ-75–39ФБ предназначена для работы на бурных и каменных углях на торфе, антрацитовым штыбе и тощих углях.

Котел – однобарабанный, с естественной циркуляции, выполнены по П – образном схеме.

Топочная камера объемом 454 м3 полностью экранирована 3 мм, а при работе котла на АШ и торфе частично трубами диаметром 60 мм, толщиной стенки 4 мм, расположенными с шагом 75 – 90 мм, Трубы фронтового и заднего экранов и нижней части трубы заднего экранов в нижней части образуют экрана разведены в четырехрядный фестон. Экраны разделены на 12 самостоятельных циркуляционных контуров по числу поставочных блоков топки.

Для сжигания каменных углей топка котла оборудуется тремя пылеугольными горелками, расположенными с фронта котла, или четырьмя пылеугольными горелками, расположенными сносно по две горелки на каждый боковой стенке.

Для сжигания фрезерного торфа топка оборудуется двумя мельничными шахтами, расположенными с фронта котла, с подачей топлива и воздуха тонкими струями. С целью обеспечения устойчивого сгорания фрезерки торфа часть поверхности боковых экранов топки на уровне амбразур утепляется. Для этого нижняя часть боковых экранов выполняется из трубы диаметром 60 мм и толщиной стенки 4 мм с приваренными к ними шипами и покрывается хромитовой массой.

Для сжигания АШ выполнена модификация котла ЬКЗ-75–39ФБ жш с жидким шлакоудалением. В этом случае для устойчивого сжигания АШ холодная воронка топки полностью утепляется, т.е. нижняя часть топки выполняется из трубы диаметром 60 мм и толщиной стенки 4 мм, шипуется и покрывается хромитовой массой, а скаты холодной воронки закрываются кирпичной кладкой. Топочная камера оборудуется четырьмя пылеугольными горелки, распложенными по две боковых стенах топки.

Схема испарения – трехступенчатая, рассчитана на питательную воду с солесодержанием плотного остатка до 350 мг/л.

Барабан котла внутренним диаметром 1500 мм и толщиной стенки 36 мм выполнен из стекла 16ГС. В барабане имеется чистый отсек первой ступени испарения и два соленых отсека первой ступени испарения и два соленых отсека второй ступени испарения по торцам барабана, оборудования внутрибарабанными циклонами. Третья ступень испарения включает два выносных циклона диаметром 337 мм. Пар из циклонов поступает в барабан.

Пароперегреватель – конвекционный, вертикального типа, с коридорным расположением труб диаметром 38 мм и толщиной 3 мм выполнен из двух блоков, расположенных поворотом газоходе между топкой и опускным газоходом. Температура перегрева регулируется поверхности пароохладителем, расположенным в рассечке пароперегревателя.

Водяной экономайзер – кипящего типа, гладкотрубный, змеевиковый, выполнен из труб диаметром 32 мм и толщиной стенки 3 мм. Состоит из трех блоков, распложенных в опускном газоходе котла.

Трубчатый воздухоподогреватель – вертикального типа, выполнен из труб диаметром 40 мм и толщиной стенки 1,5 мм имеет четыре хода по воздушной стороне. Состоит из трех блоков.

При необходимости котлоагрегат может быть оборудован устройством для дробовой очистки поверхности нагрева водяного экономайзера и воздухоподогревателя, а так же защитой от дробового наклепа.

Каркас котла – металлический, сварной конструкции, с обшивкой. Обмуровка – трехслойная, выполнена виде плит облегченного типа, закрепляемых на каркасе котла. Толщина обмуровки 265 мм, в местах, не закрытых трубами, – 320 мм.

Котлоагрегат поставляется крупными транспортабельными блоками.


1.2 Техническая характеристика котла


Таблица 1.1 – Техническая характеристика котла типа БКЗ-75–39ФБ

Наименование Обозначение
1. Паропроизводительность, т/ч 75
2. Давление пара, на выходе из котла МПа (кгс/см2) 40
3. Температура, 0С
перегретого пара 440
питательной воды 145
уходящих газов 131
4. Расчетный к.п.д. % 89,3
5. Габаритные размеры, мм
Верхняя отметка 24535
Ширина по осям колони 7430
Глубина по осям колони 11120
6. Все металла котла в объеме поставки завода. 340

1.3 Характеристика топлива


Принято твердое органическое топливо по степени углефикации исходного органического материала делят на древесину, торф, бурый уголь, каменный уголь и антрацит

Марки угля различают по выходу летучих и характеру летучего остатка. Характеристики угля в пределах одних и тех же марок определяются для каждого угольного бассейна отдельно.

Петрографический состав угля. Уголь по своей природе является веществом, неоднородным по цвету, блеску, твердости, пористости и другим параметрам

Твердое топливо способно удерживать в своем объеме определенное количество влаги в результате химического и физико-химического гетерогенного взаимодействия с веществом угля. Влагу общую W, удерживаемую веществом угля, условно делят на внешнюю Wcx и гидратную Wm. К внешней влаге относят влагу, попавшую в массу угля в пласте, а также влагу, попавшую при добыче, хранении и транспортировке топлива за счет грунтовых вод и из атмосферного воздуха (свободная влага); сортированную влагу и заполняющую капилляры и открытые поры массы угольного вещества (связанная влага). Внешняя влага легко удаляется из угля механическими средствами и термической сушкой при температуре до 105 °С. К гидратной влаге относят влагу, входящую в состав кристаллогидратов минеральных примесей топлива, и коллоидную влагу, являющуюся составной частью угольного вещества. Гидратная влага выводится из топлива для большинства кристаллогидратов при температурах 150–200 °С, а при кратковременном пребывании в высокотемпературной среде полное выделение гидратной влаги происходит при температурах среды свыше 600 °С. Гидратная влага составляет лишь несколько процентов от общего содержания воды в топливе. При увеличении зольности топлива доля гидратной влаги растет.

Твердое органическое топливо является термически нестойким веществом, которое при нагревании разлагается, в результате чего происходит деструкция (распад) термически нестойких сложных углеводородсодержащих соединений массы топлива с выделением горючих (водорода, углеводородов, окиси углерода) и негорючих (углекислоты и водяных паров) газов. Для получения углевой пыли, уголь измельчается в шаровых мельницах.

Топочное устройство


На агрегате большой производительности устанавливают мощные одно и двух улиточные, лопаточные и улиточно-лопаточные пылеугольные круглые горелки. При любой конструкции круглой горелки потоки пылевоздушной смеси и вторичного воздуха закручиваются в одном направлении. В горелке ОРГРЭС (см. рис. 4.12, а), вторичный воздух, получивший вращение в улиточном устройстве, встречаясь с пылевоздушной смесью, увлекает ее. В горелках ТКЗ, ЗИО и ЦКТИ (см. рис. 4.12, б, в) оба потока закручиваются вследствие улиточного или лопаточного подвода. Потоки образуют в топке два концентрически расходящихся усеченных конуса, как бы опирающихся малыми основаниями на кольцевые выходы из горелки (рис. 4.13). Внутри образуется конус пылевоздушной смеси, снаружи к нему примыкает конусообразный поток вторичного воздуха. По мере движения в топке оба потока проникают один в другой, перемешиваются, увлекая за собой топочные газы. Чем больше горячих топочных газов вовлекается в этот процесс, тем быстрее воспламеняется и сгорает топливо. Для увеличения угла раскрытия факела мощные горелки имеют коническую выходную насадку. С этой же целью выходящую часть амбразуры часто также выполняют конической, расширяющейся к устью. При этом достигается лучшее сочетание форм развития факела и амбразуры, увеличивается поверхность контакта факела, ускоряется воспламенение топлива.

На полноту сгорания топлива сильное влияние оказывают скорости вдувания в топку первичной смеси и вторичного воздуха. При малой скорости первичной смеси возможны выпадение из потока крупных частиц топлива и обгорание выходных патрубков горелки. Слишком большая скорость первичной смеси ухудшает условия воспламенения и увеличивает длину факела, i Скорость вторичного воздуха так же, как и первичного, выбирается в зависимости от выхода летучих w – 12 – 25 м/с, 12) 2=18–4–30 м/с. Круглые горелки универсальны и применимы для любого твердого топлива, но наибольшее распространение они получили для топлива с малым выходом летучих. Единичная мощность круглых горелок достигает 14 т/ч (по углю АШ).


Проверечный расчет котла БКЗ 75-39

Рис. 4.12. Схема различных круглых пылеугольных

горелка с лопаточным аппаратом

1-ствол для аэропыли; 2 – улитка первичного воздуха;

3 – улитка вторичного воздуха; 4 – рассекатель;

5 – порог; 6 – амбразура; 7 – лопаточный аппарат;

8 – мазутная форсунка; 9 – подвод воздуха к мазутной

форсунке; I – подвод пылевоздушной смеси;

II – подвод вторичного воздуха


1.5 Сепаратор пыли


Сепараторы применяются для выделения из патока пыли крупных частиц и возврата их в мельницу на домол. В зависимости от конструктивного выполнения – они бывают центробежные, гравитационные и инерционные.

Центробежные сепараторы применяются в системах с шаровыми мельницами, реже с быстроходными и среднеходными.

Центробежные смесь поступает во входной патрубок со скоростью 15–22 м/с. В сепараторе скорость падает до 2–6 м/с, а результате чего выпадают наиболее крупных частицы и по патрубок поступают обратно на домол в мельницу. Далее пылевоздушная смесь приходит по кольцевому каналу вверх и через окна поступает во внутренний конус. В окнах пыль закручивается благодаря направленности, созданной поворотными лопатками. В результате центробежных сил теряется скорость. Крупных частицы выпадают из потока и по патрубку поступают на домол. Готовая кондиционная пыль по выходной трубе направляется в пылесистему.

Гравитационные сепараторы представляет собой прямоугольную вертикальную шахту 2 из листов стали высотой от 4 до 8 м и более. Отделения крупных частиц осуществляется в шахте под действием сил тяжести. Количества воздуха, подаваемого в шахту, определяется расчетом. По расходу сушильной среды и скорости рассчитывается площадь сечения сепаратора. Размолотое топливо с сушильной средой выбрасывается билами в шахту, часть пылевоздушной среды подсасывается за счет подсоса воздуха ротором молотковой мельницы вдоль противоположной стенки обратно в мельницу.

Инерционные сепараторы применяются с молотковыми мельницами при работе на бурных углях и сланцах с тонкостью пыли R90 › 40%, а также на фрезерном торфе. На показано конструкция инерционного сепаратора. Пылевоздушная смесь поступает из мельницы вверх и после двойного поворота выходит через выходной патрубок, а крупные частицы возвращаются обратно в мельницу. Тонкость помола пыли регулируется специальными шибером. Скорость в канале применяется 4,5–7,5 м/с, в наибольшем сечении сепаратора 2–3 м/с, воздуха входном патрубке 12–18 м/с.


2. Специальная часть


2.1 Исходные данные


Тип котла – БКЗ-75–39

Тип топки – ТЛЗМ-2700/3000

Паропроизводительность номинальная – 75т/ч

Давление насыщенного пара в барабане котла – 3,9мПа

Температура питательной воды – 1450С

Топливо – Итатское (каменные уголь)

Хвостовые поверхности нагрева – В/Э, ВЗП

Температура уходящих газов – 141

Расчётные характеристики топлива

По табл. 4.1 для Итатское каменное угля

Wр = 40,5% Aр =6,8% Sрор + к = 0,4% Cр=36,2%

Hр =2,6% Nр = 0,4% Oр =12,7%

Qрн =12,820 Vг =48,0

Характеристики плавкости золы: t1 = 1200

t2 =1220

t3 =1240

Приведённая зольность:


Aп = 10і ·Aр/Qрн =103*6,8/12820=0,53 (2.1)


Приведённая влажность:


Wп = 10і · Wр/ Qрн =103*40,5/12820=3,91 (2.2)


Приведённая сернистость:

Sп = 10і · Sрор + к / Qрн =103*0,4/12820=0,031 (2.3)


Расчётные характеристики топки

По табл. 5.1. для топки ……ТЛЗМ-2700/3000……………….:

Коэффициент избытка воздуха на выходе из топки – αт =1,2

Тепловое напряжение площади зеркала горения – qR =1200/1300кВт/м2

Тепловое напряжение объёма топки – qV =180кВт/м3

Потеря теплоты от химической неполноты сгорания – q3 =0,5

Потеря теплоты от механической неполноты сгорания –

q4 =1

Для золы топлива, уносимая газами – αун =0,95

Коэффициенты избытка воздуха в газовом тракте установки

Присосы воздуха в отдельных элементах котельной установки согласно табл. 5.4.:

В конвективном пучке – Δαкп =0,1

В чугунном водяном экономайзере – Δαэ =0,1

В золоуловителе – Δαзу =0,05

В стальных газопроводах длиной L≈10 м – Δαг =0,01

Коэффициенты избытка воздуха:


За котлом (перед экономайзером) – αк = α'э = αт + Δαкп =1,3 (2.4)

За экономайзером – α«э = α'э + Δαэ =1,4 (2.5)

Перед дымососом – αg = α«э + Δαзу + Δαг =1,46 (2.6)


2.2 Объёмы воздуха и продуктов сгорания


Топливо – Итатское угол.

Теоретический объём воздуха: объём воздуха (V0, м3/кг), необходимый для полного сгорания 1 килограмма твердого или жидкого топлива заданного состава определяются по уравнению:

V0= 0,0889 (Ср+ 0,375Spор+к)+ 0,265Нр – 0,0333Ор (2.7)

Теоретические объемы продуктов сгорания (при α=I) при сжигании жидких топлив (Vi0, м3/кг) рассчитывается по соотношениям:

а) объем азота


VN20= 0,79 V0+ 0,008Np; (2.8)


б) объем трехатомных газов


Проверечный расчет котла БКЗ 75-39 (2.9)


в) объем водяных паров

V0H2O=0,111Hp+ 0,0124W+ 0,0161 V0 (2.10)

Объёмные доли трёхатомных газов и водяных паров, равные их парциальным давлениям при общем давлении 0,1 Мпа, вычисляются по соотношениям:


Проверечный расчет котла БКЗ 75-39 (2.11)

Проверечный расчет котла БКЗ 75-39 (2.12)

Проверечный расчет котла БКЗ 75-39 (2.13)


Средняя плотность продуктов сгорания(pr, кг/м3) определяется как:

Проверечный расчет котла БКЗ 75-39 (2.14)


Где масса газов(Gr, кг/кг или кг/м3) при сжигании жидких топлив находится из выражения:


Gr= 1 – 0,01· Ар+ 1,306· α· V0. (2.15)

Vо = 0,0889 (Cр + 0,375 · Sрор + к) + 0,265 · Hр – 0,0333 · Oр = 0,889 (36,6+0,375*0,4)+0,265*2,6–0,0333*12,7=3,57 (2.16)


Теоретический объём азота:


VоN2 = 0,79 · Vо + 0,008 · Nр =0,79*3,53+0,008*0,4Проверечный расчет котла БКЗ 75-39=2,793 (2.17)


Объём трёхатомных газов:


VRO2 = 1,866 ·(Cр + 0,375 · Sрор + к /100) =1,866*Проверечный расчет котла БКЗ 75-39=0,69 (2.18)


Теоретический объём водяных паров:


VоH2O = 0,111 · Hр + 0,0124 · Wр + 0,0161 · Vо =0,111*2,6+0,0124*40,5+0,0161*3,5=0,848 (2.10)


Таблица 1.1

Высчитываемая величина Размерность Коэффициент избытка воздуха


αт=1,2 αк=α'э=1,3 α«э=1,4 αg=1,46
Vн2о=V0н2о+0,0161 (α-1)· V0 м3/кг 0,859 0,865 0,870 0,874
Vr=VRO2+V0N2+V0H2O+1,0161·(α-1) V0 , 5,045 5,404 5,783 5,978
ЧRO2 = VRO2 / Vг - 0,136 0,128 0,119 0,115
ЧH2O = VH2O / Vг - 0,170 0,160 0,150 0,146
Ч п= ЧRO2+ Ч Н2О - 0,306 0,288 0,269 0,261
Gг =1–0,01·Ар+1,306·α·V0

кг/кг

6,464 6,925 7,386 7,662
ρг = Gг / Vг кг/м3 1,281 1,282 1,284 1,286

2.3 Расчёт энтальпий воздуха и продуктов сгорания


Энтальпия представляет собой теплосодержание единицы объема топлива, при определённой температуре.

Энтальпия полного объёма газообразных продуктов сгорания.


I r= I0r+I ∆Vв + I ∆ H2O (2.20)


В твёрдом топливе, в продуктах горения присутствуют частицы золы, которые тоже обладают энтальпией.


I r =I0r +I ∆в + I ∆ H2O+ IЗЛ (2.21)


Энтальпия есть производственной теплоёмкости, тогда энтальпия теоретического объёма газа.


I0r=VRO2(СU)RO2+V0N2·(CU) N2+ V0H2O (СU) H2O (2.22)


Энтальпия избытка количества воздуха.


I ∆в = (α-1) V0·(CU) в (2.23)


Таблица 1.2. Энтальпии дымовых газов

υ, оC

VRO2 =0,69

VоN2 =2,79

VоH2O =0,84

Jог,

кДж/кг

Vо =

3,53

мі/кг

JоB,

кДж/кг

Jг = Jог + (α – 1) JоB





αт =1,2 αк = α'э =1,3 α«э =1,4 αg =1,46

(Cυ)CO2 (Cυ)N2 (Cυ)H2O
(Cυ)B




100 169 130 151 606 132 465 699 745 792 819
200 357 260 304 1227 266 938 1414 1502 1602 1658
300 559 392 463 1867 403 1422 2151 2293 1435 2521
400 772 527 626 2528 542 1913 2910 3101 3293 3407
500 996 664 794 3206 684 2414 3791 3903 4171 4316
600 1222 804 967 3898 830 2929 4483 4776 5069 5245
700 1461 946 1147 4610 979 3455 5301 5646 5992 6199
800 1704 1093 1335 5346 1130 3988 6143 6542 6941 7180
900 1951 1243 1524 6094 1281 4521 6998 7380 7902 8173
1000 2203 1394 1725 6858 1436 5069 7871 8378 8885 9189
1100 2457 1545 1926 7623 1595 5630 8749 9312 9875 10212
1200 2717 1695 2131 8393 1754 6191 9631 10250 10869 11240
1300 2976 1850 2344 9183 1931 6816 10546 11227 11909 12318
1400 3240 2009 2558 9984 2076 7155 11415 12130 12846 13275
1500 3504 2164 2779 10789 2239 7903 12369 13159 13950 14424
1600 3767 2323 3001 11601 2403 8482 13279 14145 14993 15502
1700 4035 2482 3227 12418 2566 9057 14229 15131 16040 16584
1800 4303 2642 3458 13244 2729 9633 15170 16133 17097 17675

2.4 Тепловой баланс котлоагрегата


Определение расхода топлива.


Тепловой баланс, как известно [α] составляется для установившегося теплового режима работы котлоагрегата на 1 кг твёрдого или жидкого и 1м3 газообразного топлива.

Тепловой баланс дает представление о характере распределения теплоты вносимой в котлоагрегат (располагаемой теплоты – Qрр, кДж/кг или кДж/м3) на полезно использованную теплоту (Q1, кДж/кг или кДж/м3) и тепловые потери (∑QПОТ= Q2+ Q3+Q4+Q5+Q6, кДж/кг или кДж/м3):

QPP=Q1+∑QПОТ= Q1+ Q2+ Q3+Q4+Q5+Q6, (2.24)


где Q2 – потеря теплоты с уходящими газами, кДж/кг или кДж/м3;

Q3 – потеря теплоты от химической неполноты сгорания, кДж/кг или кДж/м3;

Q4 – потеря теплоты от механической неполноты сгорания, кДж/кг или кДж/м3;

Q5 – потеря теплоты в окружающую среду, кДж/кг или кДж/м3;

Q6 – потеря с физической теплотой шлака, кДж/кг или кДж/м3;

Теплота, вносимая в котлоагрегат (распологаемая теплота), в общем случае определяется как:


QPP= QН+ QФB+QФТ+QП-QЖД (2.25)


Здесь QН низшая теплота сгорания топлива (для твердого и жидкого топлива – QPH, кДж/кг; для газообразного – QPH, кДж/м3).

При выполнении теплового расчета потери теплоты в котлоагрегате чаще всего выражаются относительными величинами (в процентах от распологаемой теплоты QPP):


qi=Проверечный расчет котла БКЗ 75-39 (2.26)


Потеря теплоты с уходящими газами (q2=Проверечный расчет котла БКЗ 75-39)

– наибольшая из тепловых потерь, обусловлена превышением температуры уходящих газов над температурой окружающего воздуха и определяется как разность энтальпий продуктов сгорания на выходе из котла и холодного воздуха, поступающего в агрегат:

Проверечный расчет котла БКЗ 75-39 (2.27)


I0хв – энтальпия теоретически необходимого количества воздуха (кДж/кг или кДж/м3), рассчитываемая по выражению:


I0хв= V0∙CB∙tB, (2.28)


где СВ – теплоемкость воздуха, кДж/(м3К);

tB – температура холодного воздуха, поступающего в котлоагрегат (при отсутствии специальных указаний принимается tB=300, для которой теплоёмкость воздуха СВ = 1,3 кДж/(м3 К)). Потеря теплоты от химической неполноты сгорания (Проверечный расчет котла БКЗ 75-39) обусловлена наличием в дымовых газов продуктов неполного горения (Н2, СО, СmНn и др.) и определяется как одна из расчётных характеристик топки в зависимости от её конструкции и вида сжигаемого топлива по данным таблиц 5.1–5.3. Потеря теплоты от механической неполноты сгорания (Проверечный расчет котла БКЗ 75-39) обусловлена недожогом твёрдого топлива топочной камере (удалением из топки несгоревших топливных частиц со шлаком, выносим их с дымовыми газами или провалом через щели колосниковой решетки). Потеря теплоты в окружающую среду (Проверечный расчет котла БКЗ 75-39) обусловлена наружным охлождением котлоагрегата (потерей теплоты через его обмуровку) и при выполнении теплового расчёта определяется в зависимости от тепло- или паропроизводительности котла. В ходе расчёта суммарная потеря теплоты в окружающую среду распределяется по отдельным элементам котельного агрегата (топке, конвективному пучку и т.д.) пропорционально количеству теплоты, отдаваемой газами соответствующим поверхностям нагрева, и учитывается введением коэффициента сохранения теплоты:


Проверечный расчет котла БКЗ 75-39 (2.29)


где ηка – к.п.д. котлоагрегата, %. Потеря с физической теплотой шлака (Проверечный расчет котла БКЗ 75-39)

вводится в расчёт только при сжигании твёрдых топлив и обуславливается тем, что удаляемый шлак, имея высокую температуру, выносит из топки определённое количество теплоты. Величина потери q6 рассчитывается по формуле:


Проверечный расчет котла БКЗ 75-39 (2.30)


где αшл= 1-αун – доля золы топлива в шлаке (αун – доля золы в топливе уноса, определяемая по данным таблицам 5.1, 5.2); Коэффициент полезного действия котлоагрегата (ηка, %), характеризующий эффективность использования располагаемой теплоты как:


Ηка= 100 – ∑qпот= 100 – (q2+q3+q4+q5+q6), (2.31)


Полное количество теплоты, полезно использованное в паровом котле (QКА, кДж/ч), (теплоты воспринятой поверхностями нагрева и переданной рабочему теплу), находится по уравнению:


QKA= D∙(in∙iПБ)+ Dпр∙(iI – iпв), (2.32)

Dпр – расход воды на продувку котла, кг/ч, определяемый по соотношению:


Проверечный расчет котла БКЗ 75-39 (2.33)


где Р – величина непрерывной продувки, % (при отсутствии данных по величине продувки принимается Р= 5%.

Для

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.
Бесплатные корректировки и доработки. Бесплатная оценка стоимости работы.

Поможем написать работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту

Похожие рефераты: