Кожухотрубчатые теплообменные аппараты
ВВЕДЕНИЕ
Развитие силовых установок во всех областях техники в настоящее время характеризуется резким увеличением мощности в одном агрегате, повышением эффективного к.п.д. установок. Успешное решение этих задач не возможно без применения совершенных теплообменных устройств.
В зависимости от назначения аппараты используют как нагреватели и как охладители. Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой.
Рекуперативными называют теплообменники, в которых теплообмен между теплоносителями происходит через разделяющую их стенку. Они могут работать как в непрерывном, так и в периодических режимах. Большинство рекуперативных теплообменников работают в непрерывном режиме.
Кожухотрубчатые теплообменники получили наибольшее распространение, они предназначены для работы с теплоносителями жидкость-жидкость, газ-газ и представляют собой аппараты выполняемые из пучков труб. По количеству ходов все кожухотрубчатые теплообменники делят на: одна, двух, четырёх и шестиходовые.
Пластинчатые теплообменники имеют плоские параллельные поверхности теплообмена, которые образуют каналы для прохода теплоносителей. Такие теплообменники применяют для теплоносителей с примерно равными коэффициентами теплоотдачи. Для интенсивности процесса теплообмена и для увеличения площади поверхности теплообмена пластинам придают различный профиль.
Выполнение курсовой работы по курсу «Тепломассообмен» позволит закрепить знания по основным разделам дисциплины.
Курсовая работа состоит из расчётной части и графической и выполняется по следующим разделам:
1. Тепловой конструктивный расчёт рекуперативного кожухотрубчатого теплообменника.
2. Тепловой расчёт пластинчатого теплообменника.
ТЕПЛОВОЙ КОНСТРУКТИВНЫЙ РАСЧЕТ РЕКУПЕРАТИВНОГО КОЖУХОТРУБЧАТОГО ТЕПЛООБМЕННИКА
Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Теплообменники предназначены для нагрева и охлаждения, а холодильники для охлаждения (водой или другим нетоксичным, непожаро- и невзрывоопасным хладагентом) жидких и газообразных сред. Кожухотрубчатые теплообменники могут быть следующих типов: ТН – теплообменники с неподвижными трубными решетками; ТК – теплообменники с температурными компенсаторами на кожухе и жестко закрепленными трубными решетками; ТП – теплообменники с плавающей головкой, жестким кожухом и жестко закрепленной трубной решеткой; ТУ – теплообменники с U-образными трубками, жестким кожухом и жестко закрепленной трубной решеткой; ТС – теплообменники с сальником на плавающей головке, жестким кожухом и жестко закрепленной трубной решеткой (рисунок 1, Приложение 1).
Наибольшая допускаемая разность температур кожуха и труб для аппаратов типа Н может составлять 20–60 єС, в зависимости от материала кожуха и труб, давления в кожухе и диаметра аппарата.
Теплообменники и холодильники могут устанавливаться горизонтально или вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников – из латуни. Распределительные камеры и крышки выполняют из углеродистой стали.
Данный расчет проводится для определения площади поверхности теплообмена стандартного водо-водяного рекуперативного теплообменника, в котором греющая вода поступает в трубы, нагреваемая вода – в межтрубное пространство.
Задание: Выполнить тепловой конструктивный расчет водоводяного рекуперативного подогревателя производительностью Q. Температура греющего теплоносителя на входе в аппарат єС. Температура нагреваемого теплоносителя на входе в теплообменник єС, изменение температуры нагреваемого теплоносителя в аппарате К. Массовый расход греющего теплоносителя – кг/с, нагреваемого теплоносителя – кг/с. Поверхность нагрева выполнена из труб диаметром мм.
Трубы в трубной решетке расположены по вершинам равносторонних треугольников. L – длина труб, предварительно принимается равной 3,0 м. Схема движения теплоносителей – противоток. Материал труб теплообменного аппарата выбирается в соответствии с вариантом. Потерями тепла в окружающую среду пренебречь.
1.1 Расчет количества передаваемого тепла
Уравнение теплового баланса для теплообменного аппарата имеет вид:
(1.1)
где – количество теплоты в единицу времени, отданное греющим теплоносителем, Вт;
– количество теплоты в единицу времени, воспринятое нагреваемым теплоносителем, Вт;
– потери теплоты в окружающую среду, Вт.
Так как по условию, то количество передаваемого тепла в единицу времени через поверхность нагрева аппарата, Вт, ([7]):
(1.2)
где и – средние удельные массовые теплоёмкости греющего и агреваемого теплоносителей, в интервале изменения температур от до и от до , соответственно, кДж/кг ЧК.
Температура нагреваемого теплоносителя на выходе из теплообменника, єС, ([7])
(1,3)
(єС)
Средняя температура нагреваемого теплоносителя, єС:
(1.4)
(єС)
По температуре определяется значения методом линейной интерполяции ([3])
(кДж/кг ЧК)
Количество теплоты в единицу времени, воспринятое нагреваемым теплоносителем, Вт, ([7]):
(1.5)
(кВт)
Методом линейной интерполяции определяется средняя удельная массовая теплоёмкость греющего теплоносителя при температуре
(кДж/кг ЧК)
Для условия, , определяется температура греющего теплоносителя на выходе из теплообменника, єС:
, (1.6)
(єС)
Средняя температура греющего теплоносителя, єС, ([7]):
(1.7)
(єС)
По температуре определяется значения . Уточняется количество теплоты, отданное греющим теплоносителем в единицу времени, Вт, ([7]):
(1.8)
(кВт).
Величина относительной погрешности, %
, % (1.9)
%.
1.2 Определение интенсивности процессов теплообмена
В основу расчёта коэффициентов теплоотдачи между теплоносителями и поверхностью стенки положены критериальные уравнения, полученные в результате обработки многочисленных экспериментальных данных и их обобщения на основе теории подобия.
1.2.1 Расчёт интенсивности теплоотдачи со стороны греющего теплоносителя
По среднеарифметическому значению температуры определяются значения физических свойств греющего теплоносителя:
– плотность, кг/мі, (кг/мі);
– кинематический коэффициент вязкости, мІ/с, (мІ/с);
– коэффициент теплопроводности, Вт/(м· К), (Вт/(м· К));
– критерий Прандтля, .
В первом приближении температура стенки, єС:
(1.10)
(єС)
По определяется
,
Критерий Рейнольдса для потока греющего теплоносителя, ([7]):
(1.11)
где – средняя скорость греющего теплоносителя, м/с, ([7], стр.6) , (м/с).
В результате сравнения вычисленного значения = с критическим числом = 2300 устанавливаем, что режим течения жидкости турбулентный и выбираем критериальное уравнение для расчета числа Нуссельта. Интенсивность теплоотдачи в круглых трубках зависит от режима движения теплоносителя.
При турбулентном режиме течения жидкости (Re > 2300) в круглых трубах и каналах число Нуссельта определяется по критериальной зависимости, ([7]):
(1.12)
Коэффициент теплоотдачи от горячего теплоносителя к стенке трубы, Вт/(мІ· К), ([7]):
(1.16)
(Вт/(мІ· К)).
1.2.2. Расчёт интенсивности теплоотдачи со стороны нагреваемого теплоносителя
По среднеарифметическому значению температуры определяются значения физических свойств нагреваемого теплоносителя ([3]):
– плотность теплоносителя, кг/мі, (кг/мі);
– кинематический коэффициент вязкости, мІ/с, (мІ/с);
– коэффициент теплопроводности, Вт/(м· К), (Вт/(м· К));
– критерий Прандтля,.
Число Рейнольдса для потока холодного теплоносителя, ([7]):
(1.17)
где – средняя скорость нагреваемого теплоносителя, м/с, ([7], стр. 8), (м/с).
В результате сравнения вычисленного значения с критическим числом = 1000 выбираем критериальное уравнение, по которому подсчитывается число Нуссельта.
При движении теплоносителя в межтрубном пространстве коэффициент теплоотдачи рассчитывают по уравнению ([7]):
(1.18)
.
За определяющий геометрический размер принимают наружный диаметр теплообменных труб.
Коэффициент теплоотдачи от стенок трубного пучка к нагреваемому теплоносителю, Вт/(мІ· К), ([7]):
(1.20)
(Вт/(мІ· К)).
1.3 Определение коэффициента теплопередачи
Если (/) < 2, то коэффициент теплопередачи для плоской поверхности теплообмена с достаточной точностью определяется по формуле, Вт/(мІ· К), ([7]):
(1.21)
(Вт/(мІ·К))
где , – термические сопротивления слоев загрязнений с обеих сторон стенки, (м2· К)/Вт ([1]), ((м2· К)/Вт), ((м2· К)/Вт);
– толщина стенки, м;
– коэффициент теплопроводности материала трубок ([7], таблица П.1.3), Вт/(м· К);
(Вт/(м· К));
Толщина стенки трубки вычисляется по формуле, ([7]):
(1.22)
(мм)
Вычисленное значение коэффициента теплопередачи сравнивается с ориентировочными значениями k для соответствующих теплоносителей ([1]).
1.4. Определение расчетной площади поверхности теплообмена
В аппаратах с прямо- или противоточным движением теплоносителей средняя разность температур потоков определяется как среднелогарифмическая между большей и меньшей разностями температур теплоносителей на концах аппарата, ([7]):
(1.23)
(єС);
где – большая разность температур, єС, (єС)(см. рис1),
– меньшая разность температур, єС, (єС)(см. рис1).
График изменения температур теплоносителей при противотоке, ([7], рис. П1.2)
Рис.1. Графическая зависимость для определения большей и меньшей разности температур теплоносителей
При сложном взаимном движении теплоносителей, например при смешанном и перекрестном токе в многоходовых теплообменниках, средняя разность температур теплоносителей определяется с учетом поправки ([7]):
(1.24)
(єС)
Для нахождения поправочного коэффициента вычисляются вспомогательные коэффициенты P и R ([7]):
(1.25)
(1.26)
По полученным значениям коэффициентов P и R определяем поправочный коэффициент ([5]).
Поверхностная плотность теплового потока, Вт/мІ, ([7]):
(1.28)
(Вт/мІ)
Из основного уравнения теплопередачи определяется необходимая поверхность теплообмена, мІ, ([7]):
(1.29)
(мІ)
По рассчитанной площади и заданному диаметру труб выбирается стандартный теплообменный аппарат ([1]):
Параметры кожухотрубчатого теплообменника сварной конструкции с неподвижными трубными решетками (ГОСТ 15118-79,ГОСТ 15120-79,ГОСТ 15122-79).
Таблица 1
Диаметр кожуха, мм | Диаметр труб, мм | Число ходов | Общее число труб, шт. | Поверхность теплообмена(в м2) при длине труб, м | Площадь сечения потока 10-2 м2 | Площадь сечения одного хода по трубам, 10-2 м2 | |
В вырезе перегородок | Между перегородками | ||||||
3 | |||||||
400 | 20Ч2 | 2 | 166 | 31 | 1,7 | 3 | 1,7 |
Пересчитываются скорости движения и критерий Рейнольдса для греющего и нагреваемого теплоносителей, м/с, ([7]):
(1.30)
(м/с)
(1.31)
(м/с)
где – площадь сечения одного хода по трубам, м2, (м2)
– площадь сечения межтрубного пространства между перегородками, м2, (м2)
(1.32)
(1.33)
1.5 Конструктивный расчет теплообменного аппарата
Определяется число труб в теплообменнике, ([7]):
(1.34)
(шт.)
где – площадь поверхности теплообмена стандартного теплообменника, м2, (м2);
– длина труб одного хода стандартного теплообменного аппарата, м, (м).
По условию трубы по сечению трубной решетки расположены по вершинам равносторонних треугольников. Количество трубок, расположенных по сторонам большего шестиугольника, ([7]) :
(1.35)
(шт.)
Количество трубок, расположенных по диагонали шестиугольника, ([7]):
(1.36)
(шт.).
Число рядов труб, омываемых теплоносителем в межтрубном пространстве, приближенно можно принять равным 0,5 · b , т.е., ([7])
(1.37)
Для стандартных труб с наружным диаметром равным 20мм, размещенных по вершинам равносторонних треугольников, при развальцовке принимают шаг между трубами ([7], стр.12) :
t = (1,3