Привод люлечного элеватора
Будем проводить расчет для предположительно опасных сечений каждого из валов.
Ведущий вал:
Материал вала тот же, что и для шестерни (шестерня выполнена заодно с валом), т.е. Ст45, термическая обработка – улучшение.
da1 = 59,4 мм, σВ = 780 МПа.
Предел выносливости при симметричном цикле изгиба:
МПа.
Предел выносливости при симметричном цикле касательных напряжений:
МПа.
Сечение А-А:
Это сечение при передаче вращающего момента от электродвигателя через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.
Коэффициент запаса прочности:
,
где амплитуда и среднее напряжение от нулевого цикла:
.
При d = 25мм, b = 8мм, t1 = 4 мм:
принимаем .
ГОСТ 16168–78 указывает на то, чтобы конструкция редукторов предусматривала возможность восприятия радиальной консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для одноступенчатых зубчатых редукторов на быстроходном валу должна быть 2,5 при 25·103 < ТБ < 250·103 Нм.
Приняв у ведущего вала длину посадочной части под муфту, равной длине полумуфт l = 50мм (муфта УВП для валов диаметром 30 мм), получили изгибающий момент в сечении А-А от консольной нагрузки Нмм.
Коэффициент запаса прочности по нормальным напряжениям:
.
Результирующий коэффициент запаса прочности:
получился близким к коэффициенту запаса . Это незначительное расхождение свидетельствует о том, что консольные участки валов, рассчитанные по крутящему моменту и согласованные с расточками стандартных полумуфт, оказываются прочными, и что учет консольной нагрузки не вносит существенных изменений. Фактическое расхождение будет еще меньше, т.к. посадочная часть вала обычно бывает короче, чем длина полумуфты, что уменьшает значение изгибающего момента и нормальных напряжений.
Такой большой коэффициент запаса прочности объясняется тем, что диаметр вала был увеличен при конструировании для соединения его стандартной муфтой с валом электродвигателя.
По той же причине проверять прочность в сечениях Б-Б и В-В нет необходимости.
Ведомый вал:
Материал вала – Ст45 нормализованная, МПа.
Пределы выносливости МПа и МПа.
Сечение А-А:
Диаметр вала в этом сечении 45 мм. Концентрация напряжений обусловлена наличием шпоночной канавки:
Крутящий момент Т2 = 166,1·103 Н·мм.
Изгибающий момент в горизонтальной плоскости:
Н·мм.
Изгибающий момент в вертикальной плоскости:
Н·мм.
Суммарный изгибающий момент в сечении А-А:
Н·мм.
Момент сопротивления кручению (d = 45мм, b = 14мм, t1 = 5,5мм):
Момент сопротивления изгибу:
Амплитуда и среднее напряжение цикла касательных напряжений:
Амплитуда нормальных напряжений изгиба:
Среднее напряжение
Коэффициент запаса прочности по нормальным напряжениям:
Коэффициент запаса прочности по касательным напряжениям:
Результирующий коэффициент запаса прочности для сечения А-А:
Сечение К-К:
Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом
Принимаем
Изгибающий момент: Нмм.
Осевой момент сопротивления:
мм3.
Амплитуда нормальных напряжений:
МПа,
Полярный момент сопротивления:
мм2.
Амплитуда и среднее напряжение цикла касательных напряжений:
МПа.
Коэффициент запаса прочности по нормальным напряжениям:
Коэффициент запаса прочности по касательным напряжениям:
Результирующий коэффициент запаса прочности для сечения К-К:
Сечение Л-Л:
Концентрация напряжений обусловлена переходом от 40 мм к 35 мм при
Внутренние силовые факторы те же, что и для сечения К-К.
Осевой момент сопротивления сечения:
мм3.
Амплитуда нормальных напряжений МПа.
Полярный момент сопротивления:
мм3.
Амплитуда и среднее напряжение цикла касательных напряжений:
МПа.
Коэффициент запаса прочности:
.
Результирующий коэффициент запаса прочности для сечения Л-Л:
Сечение Б-Б:
Концентрация напряжений обусловлена наличием шпоночной канавки.
Изгибающий момент (положение X1 = 50мм):
Нмм.
Момент сопротивления сечения нетто при b = 10мм, t1 = 5 мм:
мм3.
Амплитуда нормальных напряжений изгиба:
МПа.
Момент сопротивления кручению сечения нетто:
мм3.
Амплитуда и среднее напряжение цикла касательных напряжений:
МПа.
Коэффициент запаса прочности:
,
.
Результирующий коэффициент запаса прочности для сечения Б-Б:
Сведем результаты проверки в таблицу
Сечения | А-А | К-К | Л-Л | Б-Б |
Коэффициент запаса S | 10,5 | 3,8 | 2,9 | 2,55 |
12. Выбор сорта масла
Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колеса примерно на 10 мм. Объем масляной ванны определяем из расчета 0,25 дм3 масла на 1кВт передаваемой мощности: V = 0,25·3,818 = 0,95 дм3.
При контактных напряжениях и скорости V = 1,2 м/с выбираем масло индустриальное И 30 А по ГОСТ 20799–75.
Камеры подшипников заполняем пластичным смазочным материалом УТ–1, периодически пополняем его шприцем через пресс-масленки.
Список литературы
"Курсовое проектирование деталей машин" – Чернавский С.А. – М.: Машиностроение,1988.
"Руководство по курсовому проектированию деталей машин" – Блинов В.С – Магнитогорск, МГТУ, 2003.